scholarly journals Large Scale Solar Magnetic Fields: Temporal Variations

2004 ◽  
Vol 219 ◽  
pp. 552-556 ◽  
Author(s):  
R. Knaack ◽  
J. O. Stenflo

We have investigated the temporal evolution of the solar magnetic field during solar cycles 20, 21 and 22 by means of spherical harmonic decomposition and subsequent time series analysis. A 33 yr and a 25 yr time series of daily magnetic maps of the solar photosphere, recorded at the Mt. Wilson and NSO/Kitt Peak observatories respectively, were used to calculate the spherical coefficients of the radial magnetic field. Fourier and wavelet analysis were then applied to deduce the temporal variations. We compare the results of the two datasets and present examples of zonal modes which show significant variations, e. g. with a period of approx. 2.0—2.5 years. We provide evidence that this quasi-biennial oscillation originates mainly from the southern hemisphere. Furthermore, we show that low degree modes with odd l — m exhibit periods of 29.2 and 28.1 days while modes with even l — m show a dominant period of 26.9 days. A resonant modal structure of the solar magnetic field (apart from the 22 yr cycle) has not been found.

2016 ◽  
Vol 12 (S328) ◽  
pp. 93-100 ◽  
Author(s):  
Sarah E. Gibson ◽  
David Webb ◽  
Ian M. Hewins ◽  
Robert H. McFadden ◽  
Barbara A. Emery ◽  
...  

AbstractIn 1964 (Solar Cycle 20; SC 20), Patrick McIntosh began creating hand-drawn synoptic maps of solar magnetic features, based on Hα images. These synoptic maps were unique in that they traced magnetic polarity inversion lines, and connected widely separated filaments, fibril patterns, and plage corridors to reveal the large-scale organization of the solar magnetic field. Coronal hole boundaries were later added to the maps, which were produced, more or less continuously, into 2009 (i.e., the start of SC 24). The result was a record of ~45 years (~570 Carrington rotations), or nearly four complete solar cycles of synoptic maps. We are currently scanning, digitizing and archiving these maps, with the final, searchable versions publicly available at NOAA's National Centers for Environmental Information. In this paper we present preliminary scientific studies using the archived maps from SC 23. We show the global evolution of closed magnetic structures (e.g., sunspots, plage, and filaments) in relation to open magnetic structures (e.g., coronal holes), and examine how both relate to the shifting patterns of large-scale positive and negative polarity regions.


2013 ◽  
Vol 8 (S300) ◽  
pp. 168-171
Author(s):  
Irina A. Bilenko

AbstractA comparison of changes in the structure of the global solar magnetic field and that in the prominence parameters, in solar cycles 21–23, are presented. It is proposed that the observed global magnetic field structure changes and periodicities in the mean solar magnetic field are the result of the excitation of large-scale Rossby waves. The changes in the prominence parameters are assumed to be the result of the global magnetic field structure changes, which may be triggered or modulated quasi-periodically by large-scale Rossby waves.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2016 ◽  
Author(s):  
Chia-Jeng Chen ◽  
Tsung-Yu Lee

Abstract. Interannual variations of catchment streamflow represent an integrated response to anomalies in regional moisture transport and atmospheric circulations, ultimately linked to large-scale climate oscillations. This study investigates the relationship between Taiwan's long-term summertime (July to September, JAS) streamflow and manifold teleconnection patterns. Lagged correlation analysis is conducted to calculate how JAS streamflow data derived at 28 upstream and 13 downstream gauges in Taiwan correlate with 14 teleconnection indices in the concurrent or preceding seasons. Out of the many indices, the West-Pacific and Pacific-Japan (PJ) patterns, both of which play a critical role in determining cyclonic activity in the western North Pacific basin, exhibit the highest concurrent correlations (most significant r = 0.48) with the JAS flows in Taiwan. At a one-month lead time, on the other hand, the Quasi-Biennial Oscillation significantly correlate with the JAS flows (most significant r = −0.66), indicating some forecasting utility. By further examining the correlation results using a 20-year moving window, peculiar temporal variations and possible climate regime shifts (CRS) can be revealed. To identify suspicious, abrupt changes in the correlation, a CRS test is employed. The late 1970s and 1990s are identified as two significant change points, and during the intermediate period, a marked in-phase relationship (r ~ 0.9) between Taiwan's streamflow and the PJ index is observed. It is verified that the two shifts are in concordance with the alteration of large-scale circulations in the Pacific basin. Discussion about the changes in pattern correlation and composite maps before and after the change point is carried out, and our results suggest that empirical forecasting techniques should take into account the effect of CRS on predictor screening.


2008 ◽  
Vol 38 (9) ◽  
pp. 1931-1948 ◽  
Author(s):  
D. Stammer ◽  
S. Park ◽  
A. Köhl ◽  
R. Lukas ◽  
F. Santiago-Mandujano

Abstract Results from Estimating the Circulation and Climate of the Ocean (ECCO)–Scripps Institution of Oceanography (SIO) global ocean state estimate, available over the 11-yr period 1992 through 2002, are compared with independent observations available at the Hawaii Ocean time series station ALOHA. The comparison shows that at this position, the estimated temporal variability has some skill in simulating observed ocean variability and that the quality of future syntheses could benefit from additional information available from the Argo network and from the time series observations themselves. On a decadal time scale, the influence radius of the station ALOHA T–S time series covers large parts of the tropical and subtropical Pacific Ocean and reaches even into the Indian Ocean through the Indonesian Throughflow. Estimated changes in sea surface height (SSH) result largely from thermosteric changes; however, nonsteric (barotropic) variations on the order of 1–2 cm also contribute to SSH changes at station ALOHA. Moreover, changes of similar magnitude can be caused by changes in the salinity field because of a quasi-biennial oscillation in the horizontal flow structure and heaving of the mean salinity structure on seasonal and interannual time scales. The adjoint modeling framework confirms westward-propagating Rossby waves (due to wind forcing) and subduction of water-mass anomalies (due to surface buoyancy forcing) as the primary mechanisms leading to observed changes of T–S structures at station ALOHA. Specifically, the analysis identifies surface freshwater fluxes along the wintertime outcrop of intermediate waters as a primary cause for salinity changes at station ALOHA and wind stress forcing east of the station position as another forcing mechanism of salinity variations around the Hawaiian Archipelago.


2021 ◽  
Author(s):  
Merav Opher ◽  
James Drake ◽  
Gary Zank ◽  
Gabor Toth ◽  
Erick Powell ◽  
...  

Abstract The heliosphere is the bubble formed by the solar wind as it interacts with the interstellar medium (ISM). Studies show that the solar magnetic field funnels the heliosheath solar wind (the shocked solar wind at the edge of the heliosphere) into two jet-like structures1-2. Magnetohydrodynamic simulations show that these heliospheric jets become unstable as they move down the heliotail1,3 and drive large-scale turbulence. However, the mechanism that produces of this turbulence had not been identified. Here we show that the driver of the turbulence is the Rayleigh-Taylor (RT) instability caused by the interaction of neutral H atoms streaming from the ISM with the ionized matter in the heliosheath (HS). The drag between the neutral and ionized matter acts as an effective gravity which causes a RT instability to develop along the axis of the HS magnetic field. A density gradient exists perpendicular to this axis due to the confinement of the solar wind by the solar magnetic field. The characteristic time scale of the instability depends on the neutral H density in the ISM and for typical values the growth rate is ~ 3 years. The instability destroys the coherence of the heliospheric jets and magnetic reconnection ensues, allowing ISM material to penetrate the heliospheric tail. Signatures of this instability should be observable in Energetic Neutral Atom (ENA) maps from future missions such as IMAP4. The turbulence driven by the instability is macroscopic and potentially has important implications for particle acceleration.


2019 ◽  
Vol 631 ◽  
pp. A138 ◽  
Author(s):  
G. Hawkes ◽  
A. R. Yeates

Aims. We estimate the injection of relative magnetic helicity into the solar atmosphere by surface flux transport over 27 solar cycles (1700–2009). Methods. We determine the radial magnetic field evolution using two separate surface flux transport models: one driven by magnetogram inputs and another by statistical active region insertion guided by the sunspot number record. The injection of relative magnetic helicity is then computed from this radial magnetic field together with the known electric field in the flux transport models. Results. Neglecting flux emergence, solar rotation is the dominant contributor to the helicity injection. At high latitudes, the injection is always negative/positive in the northern/southern hemisphere, while at low latitudes the injection tends to have the opposite sign when integrated over the full solar cycle. The overall helicity injection in a given solar cycle depends on the balance between these two contributions. This net injected helicity correlates well with the end-of-cycle axial dipole moment.


Sign in / Sign up

Export Citation Format

Share Document