rossby waves
Recently Published Documents


TOTAL DOCUMENTS

1131
(FIVE YEARS 214)

H-INDEX

56
(FIVE YEARS 8)

2022 ◽  
Author(s):  
S. Mubashshir Ali ◽  
Matthias Röthlisberger ◽  
Tess Parker ◽  
Kai Kornhuber ◽  
Olivia Martius

Abstract. In the Northern Hemisphere, recurrence of transient Rossby wave packets over periods of days to weeks, termed RRWPs, may repeatedly create similar weather conditions. This recurrence leads to persistent surface anomalies and high-impact weather events. Here, we demonstrate the significance of RRWPs for persistent heatwaves in the Southern Hemisphere (SH). We investigate the relationship between RRWPs, atmospheric blocking, and amplified quasi-stationary Rossby waves with two cases of heatwaves in Southeast Australia (SEA) in 2004 and 2009. This region has seen extraordinary heatwaves in recent years. We also investigate the importance of transient systems such as RRWPs and two other persistent dynamical drivers: atmospheric blocks and quasi-resonant amplification (QRA). We further explore the link between RRWPs, blocks, and QRA in the SH using the ERA-I reanalysis dataset (1979–2018). We find that QRA and RRWPs are strongly associated: 40 % of QRA days feature RRWPs, and QRA events are 13 times more likely to occur with an RRWPs event than without it. Furthermore, days with QRA and RRWPs show high correlations in the composite mean fields of upper-level flows, indicating that both features have a similar hemispheric flow configuration. Blocking frequencies for QRA and RRWP conditions both increase over the south Pacific Ocean but differ substantially over parts of the south Atlantic and Indian Ocean.


Author(s):  
Shuguang Wang ◽  
Juan Fang ◽  
Xiaodong Tang ◽  
Zhe-Min Tan

AbstractConvectively coupled equatorial Rossby waves (ERW) modulate tropical cyclone activities over tropical oceans. This study presents a survey of the statistical relationship between intraseasonal ERWs and tropical cyclone genesis (TCG) over major global TC basins using four-decade-long outgoing longwave radiation (OLR) and TC best-track datasets. Intraseasonal ERWs are identified from the OLR anomalies using an empirical orthogonal function (EOF) analysis method without imposing equatorial symmetry. We find that westward-propagating ERWs are most significant in four tropical ocean basins over the summer hemisphere and that ERWs exhibit similar northeast-southwest (southeast-northwest) tilted phase lines in the northern (southern) hemisphere, with an appreciable poleward advance of wave energy in most TC basins. The EOF-based ERW indices quantitatively show that ERWs significantly modulate TC genesis. The convectively active (suppressed) phases of ERWs coincide with increased (reduced) TCG occurrences. The TCG modulation by ERWs achieves the maximum where the ERWs propagate through the climatological TCG hotspots. As a result, the total number of TCG occurrences in the TC basins varies significantly according to the ERW phase. The ERW-TCG relationship is significant over the northwestern Pacific Ocean, northeastern Pacific Ocean, and the northern Indian Ocean during the northern summer seasons. In the southern summer season, the ERW-TCG relationship is significant over the southern Indian Ocean, Indonesian-Australia basin, and the southwestern Pacific Ocean. However, ERW activities are weak in the main TC development region of the Atlantic Ocean; and the impact on Atlantic TCG appears to be insignificant.


2021 ◽  
Author(s):  
Iana Strigunova ◽  
Richard Blender ◽  
Frank Lunkeit ◽  
Nedjeljka Žagar

<p>This work aims at identifying extreme circulation conditions such as heat waves in modal space which is defined by eigensolutions of the linearized primitive equations. Here, the Rossby waves are represented in terms of Hough harmonics that are an orthogonal and complete expansion set allowing Rossby wave diagnostics in terms of their total (kinetic and available potential) energies. We expect that this diagnostic provides a more clear picture of the Rossby wave variability spectra compared to the common Fourier decomposition along a latitude belt. </p> <p>The probability distributions of Rossby wave energies are analysed separately for the zonal mean flow, for the planetary and synoptic zonal wavenumbers. The robustness is ensured by considering the four reanalyses ERA5, ERA-Interim, JRA-55 and MERRA. A single wave is characterized by Gaussianity in the complex Hough amplitudes and by a chi-square distribution for the energies. We find that the distributions of the energy anomalies in the wavenumber space are non-Gaussian with almost the same positive skewness in the four reanalyses.  The skewness increases during persistent heat waves for all energy anomaly distributions, in agreement with the recent trend of increased subseasonal variance in large-scale Rossby waves and decreased variance at synoptic scales. The new approach offers a selective filtering to physical space. The reconstructed circulation during heat waves is dominated by large-scale anticyclonic systems in northeastern Europe with zonal wavenumbers 2 and 3, in agreement with previous studies, thereby demonstrating physical meaningfulness of the skewness. </p> <p> </p>


2021 ◽  
Author(s):  
Petr Šácha ◽  
Aleš Kuchař ◽  
Christoph Jacobi ◽  
Petr Pišoft ◽  
Roland Eichinger ◽  
...  

<div class="page" title="Page 1"> <div class="layoutArea"> <div class="column"> <p>In the extratropical atmosphere, Rossby waves (RWs) and internal gravity waves (GWs) propagating from the troposphere mediate a coupling with the middle atmosphere by influencing the dynamics herein. In current generation chemistry-climate models (CCMs), GWs are usually smaller than the model resolution and the majority of their spectrum therefore must be parameterized. From observations, we know that GWs are intermittent and asymmetrically distributed around the globe, which holds to some extent also for the parameterized GW drag (GWD) (in particular for orographic GWD (oGWD)). The GW parameterizations in CCMs are usually tuned to mitigate biases in the zonal mean climatology of particular quantities, but the complex interaction of parameterized GWs with the large- scale circulation and resolved waves in the models remains to date poorly understood.</p> <p>This presentation will combine observational evidence, idealized modeling and dynamical analysis of a CCM output to study both the short-term and long-term model response to the oGWD. Our results demonstrate that the oGW-resolved dynamics interaction is a complex two-way process, with the most prominent oGWD impact being the alteration of propagation of planetary-scale Rossby waves on a time-scale of a few days. The conclusions give a novel perspective on the importance of oGWD for the stratospheric polar vortex and atmospheric transport studies outlining potential foci of future research.</p> </div> </div> </div>


Author(s):  
Sebastian Brune ◽  
Maria Esther Caballero Espejo ◽  
David Marcolino Nielsen ◽  
Hongmei Li ◽  
Tatiana Ilyina ◽  
...  

Abstract In the Pacific Ocean, off-equatorial Rossby waves, initiated by atmosphere-ocean interaction, modulate the inter-annual variability of the thermocline. In this study, we explore the resulting potential gain in predictability of central tropical Pacific primary production, which in this region strongly depends on the supply of macronutrients from below the thermocline. We use a decadal prediction system based on the Max Planck Institute Earth system model (MPI-ESM) to demonstrate that for the time period 1998-2014 properly initialized Rossby waves explain an increase in predictability of net primary productivity in the off-equatorial central tropical Pacific. We show that, for up to 5 years in advance, predictability of net primary productivity derived from the decadal prediction system is significantly larger than that derived from persistence alone, or an uninitialized historical simulation. The predicted signal can be explained by the following mechanism: off-equatorial Rossby waves are initiated in the eastern Pacific and travel towards the central tropical Pacific on a time scale of 2 to 6 years. On their arrival the Rossby waves modify the depths of both thermocline and nutricline, which is fundamental to the availability of nutrients in the euphotic layer. Local upwelling transports nutrients from below the nutricline into the euphotic zone, effectively transferring the Rossby wave signal to the near-surface ocean. While we show that skillful prediction of central off-equatorial tropical Pacific net primary productivity is possible, we open the door for establishing predictive systems for food web and ecosystem services in that region.


2021 ◽  
Vol 9 ◽  
Author(s):  
Haibo Zhou ◽  
Ke Fan

This study reveals an intensified impact of winter (November–February mean) Arctic Oscillation (AO) on simultaneous precipitation over the mid–high latitudes of Asia (MHA) since the early 2000s. The unstable relationship may be related to the changes in the tropospheric AO mode and the subtropical jet. Further analyses suggest that their changes may be attributable to the interdecadal changes in the stratospheric polar vortex. During 2002–2017, the anomalously weak stratospheric polar vortex is accompanied by intensified upward-propagating tropospheric planetary-scale waves anomalies. Subsequently, the stratospheric geopotential height anomalies over the North Atlantic high-latitudes propagate downward strongly, causing the changes in the tropospheric AO mode, that is, the positive height anomalies over the North Atlantic high-latitudes are stronger and extend southward, corresponding to the stronger and eastward extension of negative height anomalies over the North Atlantic mid-latitudes. Thus, the Rossby wave source anomalies over Baffin Bay and the Black Sea are strong, and correspondingly so too are their subsequently excited the Rossby waves anomalies. Meanwhile, the planetary-scale waves anomalies propagate weakly along the low-latitude waveguide, causing the intensified and southward shift of the subtropical jet. Therefore, the strong Rossby waves anomalies propagate eastward to the MHA. By contrast, during 1979–1999, the strong stratospheric polar vortex anomaly is accompanied by weak upward-propagating planetary-scale waves anomalies, resulting in weaker height anomalies over the North Atlantic mid–high latitudes. Consequently, the anomalous Rossby waves are weak. In addition, the subtropical jet weakens and shifts northward, which causes the Rossby waves anomalies to dominate over the North Atlantic, and thereby the impact of winter AO on simultaneous precipitation over the MHA is weak.


2021 ◽  
Author(s):  
Xiaofan Ma ◽  
Gang Huang ◽  
Xichen Li ◽  
Shouwei Li

Abstract Observations, theoretical analyses, and climate models show that the period of multidecadal variability of the Atlantic Meridional Overturning Circulation (AMOC) is related to westward temperature propagations in the subpolar North Atlantic, which is modulated by oceanic baroclinic Rossby waves. Here, we find major periods of AMOC variability of 12-28 years and associated westward temperature propagations in the preindustrial simulations of 9 CMIP6/CMIP5 models. Comparison with observations shows that the models reasonably simulate ocean stratifications in turn oceanic Rossby waves in the subpolar North Atlantic. The timescales of Rossby waves propagating on a static background flow across the subpolar North Atlantic basin overestimate the AMOC periods. The mean flow effects involving westward geostrophic self-advection and eastward mean advection largely shorten and greatly improve the estimate of AMOC periods through increasing Rossby wave speeds. Our results illustrate the importance of considering mean flow effects on Rossby wave propagations in the estimate of AMOC periods.


Author(s):  
Jun-Hyeok Son ◽  
Jae-Il Kwon ◽  
Ki-Young Heo

Abstract The steering flow of the large-scale circulation patterns over the Western North Pacific and North East Asia, constrains typhoon tracks. Westerly winds impinging on the Tibetan Plateau, and the resulting flow uplift along the slope of the mountain, induce atmospheric vortex flow and generate stationary barotropic Rossby waves downstream. The downstream Rossby wave zonal phase is determined by the upstream zonal wind speed impinging on the Tibetan Plateau. Positive anomaly of westerly wind forcing tends to induce an eastward shift of the large-scale Rossby wave circulation pattern, forming a cyclonic circulation anomaly over North East Asia. In this study, we show that the Tibetan Plateau dynamically impacts the tracks of western Pacific typhoons via modulation of downstream Rossby waves. Using the topographically forced stationary Rossby wave theory, the dynamical mechanisms for the formation of the North East Asian cyclonic anomaly and its impact on the typhoon tracks are analyzed. The eastward shift of typhoon tracks, caused by the southwesterly wind anomaly located to the southeast of the North East Asian cyclonic circulation anomaly, is robust in June and September, but it is not statistically significant in July–August. The physical understanding of the large-scale circulation pattern affecting typhoon trajectories has large implications not only at the seasonal prediction of the high impact weather phenomena, but also at the right understanding of the long-term climate change.


Author(s):  
Rachel H. White ◽  
Kai Kornhuber ◽  
Olivia Martius ◽  
Volkmar Wirth

AbstractA notable number of high impact weather extremes have occurred in recent years, often associated with persistent, strongly meandering atmospheric circulation patterns known as Rossby waves. Because of the high societal and ecosystem impacts, it is of great interest to be able to accurately project how such extreme events will change with climate change, and to predict these events on seasonal to subseasonal (S2S) timescales. There are multiple physical links connecting upper atmosphere circulation patterns to surface weather extremes, and it is asking a lot of our dynamical models to accurately simulate all of these. Subsequently, our confidence in future projections and S2S forecasts of extreme events connected to Rossby waves remains relatively low. We also lack full fundamental theories for the growth and propagation of Rossby waves on the spatial and temporal scales relevant to extreme events, particularly under strongly non-linear conditions. By focussing on one of the first links in the chain from upper atmospheric conditions to surface extremes -- the Rossby waveguide -- it may be possible to circumvent some model biases in later links. To further our understanding of the nature of waveguides, links to persistent surface weather events and their representation in models, we recommend: exploring these links in model hierarchies of increasing complexity, developing fundamental theory, exploiting novel large ensemble data sets, harnessing deep learning, and increased community collaboration. This would help increase understanding and confidence in both S2S predictions of extremes and of projections of the impact of climate change on extreme weather events.


Sign in / Sign up

Export Citation Format

Share Document