scholarly journals Large scale interaction of the outflow and quiescent gas in Orion

1991 ◽  
Vol 147 ◽  
pp. 456-457
Author(s):  
J. Martin-Pintado ◽  
A. Rodriguez-Franco ◽  
R. Bachiller

The IRAM 30-m radiotelescope have been used to obtain, with high angular resolution, the spatial distribution and the physical conditions of the quiescent gas in Orion A, and to search for high velocity molecular gas far away from the well known molecular outflow around IRc2. To study the quiescent gas we mapped a region of 200″×300″ around IRc2 in the J=12-11 and J=16-15 lines of HC3N with angular resolutions of 22″ and 17″ respectively. The left panel of Fig. 1 shows the spatial distribution of the high density quiescent gas around IRc2 for different radial velocities. Beside the already known molecular ridge north of IRc2 (see e. g. Bartla et al. 1983), we find four very thin (nearly unresolved) and long filaments, like “fingers”, stretching from IRc2 to the north and west. The deconvolved size of the longest fingers is ≈180″×15″. From a multi-transition analysis of the HC3N emission we derive H2 densities of 1−8 105 cm−3, kinetic temperatures larger than 40 K and masses of ≈10 Mo. Our high sensitivity observations of the J=2-1 line of CO at selected positions (see right panel ib Fig. 1) show widespread molecular gas with high velocities wings over the region where the molecular fingers and the HH objects are observed (see Fig.1). The high velocity emission occurs over a range of ±40 kms−1. This high velocity gas is more extended (up to 150″ from IRc2) than the very compact (40″) and well studied molecular outflow around IRc2 (see e.g. Wilson et al. 1986). The terminal velocities of the CO wings decrease from 100 km s−1 (corresponding to the very fast molecular flow) to the typical terminal velocities of the extended high velocity gas when the distance to IRc2 changes from 40″ to 60″. The origin of the large scale high velocity gas is unknown, but it is very likely the link between the very compact (40″) and fast (±100 km s−1) molecular outflow around IRc2 and the ionized high velocity gas and the HH objects (Martín-Pintado et al. 1990). The mass, momentum and energy of the extended high velocity gas are crudely estimated to be ≈1 Mo, ≈20 Mo km s−1 and ≈2 1045 erg respectively (i.e. a factor of ≈10 smaller than those of the fast molecular outflow). The location, at the edges of the molecular fingers, and the proper motions of the HH objects (see Fig. 1) suggest the stellar wind is interacting with the molecular fingers. If this interpretation is correct, the influence of the molecular outflow in Orion on the surrounding molecular clouds must be revised.

1991 ◽  
Vol 147 ◽  
pp. 456-457
Author(s):  
J. Martin-Pintado ◽  
A. Rodriguez-Franco ◽  
R. Bachiller

The IRAM 30-m radiotelescope have been used to obtain, with high angular resolution, the spatial distribution and the physical conditions of the quiescent gas in Orion A, and to search for high velocity molecular gas far away from the well known molecular outflow around IRc2. To study the quiescent gas we mapped a region of 200″×300″ around IRc2 in the J=12-11 and J=16-15 lines of HC3N with angular resolutions of 22″ and 17″ respectively. The left panel of Fig. 1 shows the spatial distribution of the high density quiescent gas around IRc2 for different radial velocities. Beside the already known molecular ridge north of IRc2 (see e. g. Bartla et al. 1983), we find four very thin (nearly unresolved) and long filaments, like “fingers”, stretching from IRc2 to the north and west. The deconvolved size of the longest fingers is ≈180″×15″. From a multi-transition analysis of the HC3N emission we derive H2 densities of 1−8 105 cm−3, kinetic temperatures larger than 40 K and masses of ≈10 Mo. Our high sensitivity observations of the J=2-1 line of CO at selected positions (see right panel ib Fig. 1) show widespread molecular gas with high velocities wings over the region where the molecular fingers and the HH objects are observed (see Fig.1). The high velocity emission occurs over a range of ±40 kms−1. This high velocity gas is more extended (up to 150″ from IRc2) than the very compact (40″) and well studied molecular outflow around IRc2 (see e.g. Wilson et al. 1986). The terminal velocities of the CO wings decrease from 100 km s−1 (corresponding to the very fast molecular flow) to the typical terminal velocities of the extended high velocity gas when the distance to IRc2 changes from 40″ to 60″. The origin of the large scale high velocity gas is unknown, but it is very likely the link between the very compact (40″) and fast (±100 km s−1) molecular outflow around IRc2 and the ionized high velocity gas and the HH objects (Martín-Pintado et al. 1990). The mass, momentum and energy of the extended high velocity gas are crudely estimated to be ≈1 Mo, ≈20 Mo km s−1 and ≈2 1045 erg respectively (i.e. a factor of ≈10 smaller than those of the fast molecular outflow). The location, at the edges of the molecular fingers, and the proper motions of the HH objects (see Fig. 1) suggest the stellar wind is interacting with the molecular fingers. If this interpretation is correct, the influence of the molecular outflow in Orion on the surrounding molecular clouds must be revised.


1997 ◽  
Vol 182 ◽  
pp. 141-152 ◽  
Author(s):  
J. Cernicharo ◽  
R. Neri ◽  
Bo Reipurth

We present high angular resolution observations of the molecular outflow associated with the optical jet and HH objects of the HH111 system. Interferometric observations in the CO J =2–1 and J =1–0 lines of the high velocity bullets associated with HH111 are presented for the first time. The molecular gas in these high velocity clumps has a moderate kinetic temperature and a mass of a few 10–4 M⊙ per bullet. We favor the view that HH jets and CO bullets, which represent different manifestations of the same physical phenomena, are driving the low-velocity molecular outflow.


2018 ◽  
Vol 609 ◽  
pp. A75 ◽  
Author(s):  
N. Falstad ◽  
S. Aalto ◽  
J. G. Mangum ◽  
F. Costagliola ◽  
J. S. Gallagher ◽  
...  

Context. Feedback in the form of mass outflows driven by star formation or active galactic nuclei is a key component of galaxy evolution. The luminous infrared galaxy Zw 049.057 harbours a compact obscured nucleus with a possible far-infrared signature of outflowing molecular gas. Due to the high optical depths at far-infrared wavelengths, however, the interpretation of the outflow signature is uncertain. At millimeter and radio wavelengths, the radiation is better able to penetrate the large columns of gas and dust responsible for the obscuration. Aims. We aim to investigate the molecular gas distribution and kinematics in the nucleus of Zw 049.057 in order to confirm and locate the molecular outflow, with the ultimate goal to understand how the nuclear activity affects the host galaxy. Methods. We used high angular resolution observations from the Submillimeter Array (SMA), the Atacama Large Millimeter/submillimeter Array (ALMA), and the Karl G. Jansky Very Large Array (VLA) to image the CO J = 2–1 and J = 6–5 emission, the 690 GHz continuum, the radio centimeter continuum, and absorptions by rotationally excited OH. Results. The CO line profiles exhibit wings extending ~ 300 km s-1 beyond the systemic velocity. At centimeter wavelengths, we find a compact (~ 40 pc) continuum component in the nucleus, with weaker emission extending several 100 pc approximately along the major and minor axes of the galaxy. In the OH absorption lines toward the compact continuum, wings extending to a similar velocity as for the CO are only seen on the blue side of the profile. The weak centimeter continuum emission along the minor axis is aligned with a highly collimated, jet-like dust feature previously seen in near-infrared images of the galaxy. Comparison of the apparent optical depths in the OH lines indicate that the excitation conditions in Zw 049.057 differ from those within other OH megamaser galaxies. Conclusions. We interpret the wings in the spectral lines as signatures of a nuclear molecular outflow. A relation between this outflow and the minor axis radio feature is possible, although further studies are required to investigate this possible association and understand the connection between the outflow and the nuclear activity. Finally, we suggest that the differing OH excitation conditions are further evidence that Zw 049.057 is in a transition phase between megamaser and kilomaser activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
V. Lauria ◽  
D. Massi ◽  
F. Fiorentino ◽  
G. Milisenda ◽  
T. Cillari

AbstractThe black coral Leiopathes glaberrima is an important habitat forming species that supports benthic biodiversity. Due to its high sensitivity to fishing activities, it has been classified as indicator of Vulnerable Marine Ecosystems (VMEs). However, the information on its habitat selection and large-scale spatial distribution in the Mediterranean Sea is poor. In this study a thorough literature review on the occurrence of L. glaberrima across the Mediterranean Sea was undertaken. Predictive modelling was carried out to produce the first continuous map of L. glaberrima suitable habitat in the central sector of the Mediterranean Sea. MaxEnt modeling was used to predict L. glaberrima probability of presence as a function of seven environmental predictors (bathymetry, slope, aspect North–South and East–West, kinetic energy due to currents at the seabed, seabed habitat types and sea bottom temperature). Our results show that bathymetry, slope and aspect are the most important factors driving L. glaberrima spatial distribution, while in less extent the other environmental variables. This study adds relevant information on the spatial distribution of vulnerable deep water corals in relation to the environmental factors in the Mediterranean Sea. It provides an important background for marine spatial planning especially for prioritizing areas for the conservation of VMEs.


2015 ◽  
Vol 54 (11) ◽  
pp. 2179-2197 ◽  
Author(s):  
Mark Smalley ◽  
Tristan L’Ecuyer

AbstractThe spatial distribution of precipitation occurrence has important implications for numerous applications ranging from defining cloud radiative effects to modeling hydrologic runoff, statistical downscaling, and stochastic weather generation. This paper introduces a new method of describing the spatial characteristics of rainfall and snowfall that takes advantage of the high sensitivity and high resolution of the W-band cloud precipitation radar aboard CloudSat. The resolution dependence of precipitation occurrence is described by a two-parameter exponential function defined by a shape factor that governs the variation in the distances between precipitation events and a scale length that represents the overall probability of precipitation and number density of distinct events.Geographic variations in the shape factor and scale length are consistent with large-scale circulation patterns and correlate with environmental conditions on local scales. For example, a large contrast in scale lengths between land and ocean areas reflects the more extensive, widespread nature of precipitation over land than over ocean. An analysis of warm rain in the southeast Pacific reveals a shift from frequent isolated systems to less frequent but more regularly spaced systems along a transect connecting stratocumulus and trade cumulus cloud regimes. A similar analysis during the Amazon wet season reveals a relationship between the size and frequency of convection and zonal wind direction with precipitation exhibiting a more oceanic character during periods of westerly winds. These select examples demonstrate the utility of this approach for capturing the sensitivity of the spatial characteristics of precipitation to environmental influences on both local and larger scales.


2005 ◽  
Vol 13 ◽  
pp. 964-964
Author(s):  
Marco Ferrari-Toniolo

If we concentrate our attention on the study and the evolution of star forming processes rather than on the large scale structure, from the recent use of Large Telescopes in this context there are many examples of great interest. These include the study of the early phases of aggregation of matter (stellar and planet formation), and the late phases of disaggregation during stellar evolution. In Fig 1, a spectacular example is shown of a high resolution image of an edge-on circumstellar disk of a young star (HR4796A), with respect to previous less resolved information (C.Telesco et al, Proc SPIE 4834, 101, 2002). A recent hypothesis of a Large Infrared Telescope called GTA (Grande Telescopio Antartico) has been proposed to the PNRA (Italian Plan for Antarctic Researches). This will require the following characteristics: high angular resolution in the mid-IR domain (large aperture); very high sensitivity (mainly due to the cold, dry conditions of the site); extreme simplicity in design and operational modes. The telescope will be a survey instrument and will be used almost without human intervention. The project examines the construction of a third tower at Dome C with the telescope configured to work in quasi-drift-scan without moving the enclosure and with a limited tracking time. In Fig 1, a sketch of the tower hosting the telescope is shown (M.F-T. et al, Proc SPIE 4836, 165, 2002). A study will be developed to determine the optimum configurations for observing in different bands, from the optical to the sub-mm range, with a refurbishment of the telescope and instrumentation during the summer break.


2019 ◽  
Vol 629 ◽  
pp. A8 ◽  
Author(s):  
D. Tafoya ◽  
G. Orosz ◽  
W. H. T. Vlemmings ◽  
R. Sahai ◽  
A. F. Pérez-Sánchez

Context. Water-fountain nebulae are asymptotic giant branch (AGB) and post-AGB objects that exhibit high-velocity outflows traced by water-maser emission. Their study is important for understanding the interaction between collimated jets and the circumstellar material that leads to the formation of bipolar and/or multi-polar morphologies in evolved stars. Aims. The aim of this paper is to describe the three-dimensional morphology and kinematics of the molecular gas of the water-fountain nebula IRAS 16342−3814. Methods. Data was retrieved from the ALMA archive for analysis using a simple spatio-kinematical model. The software SHAPE was employed to construct a three-dimensional, spatio-kinematical model of the molecular gas in IRAS 16342−3814, and to then reproduce the intensity distribution and position-velocity diagram of the CO emission from the ALMA observations to derive the morphology and velocity field of the gas. Data from CO(J = 1 → 0) supported the physical interpretation of the model. Results. A spatio-kinematical model that includes a high-velocity collimated outflow embedded within material expanding at relatively lower velocity reproduces the images and position-velocity diagrams from the observations. The derived morphology is in good agreement with previous results from IR and water-maser emission observations. The high-velocity collimated outflow exhibits deceleration across its length, while the velocity of the surrounding component increases with distance. The morphology of the emitting region, the velocity field, and the mass of the gas as function of velocity are in excellent agreement with the properties predicted for a molecular outflow driven by a jet. The timescale of the molecular outflow is estimated to be ~70–100 yr. The scalar momentum carried by the outflow is much larger than it can be provided by the radiation of the central star. An oscillating pattern was found associated with the high-velocity collimated outflow. The oscillation period of the pattern is T ≈ 60–90 yr and its opening angle is θop ≈ 2°. Conclusions. The CO (J = 3 → 2) emission in IRAS 16342−3814 is interpreted in terms of a jet-driven molecular outflow expanding along an elongated region. The position-velocity diagram and the mass spectrum reveal a feature due to entrained material that is associated with the driving jet. This feature is not seen in other more evolved objects that exhibit more developed bipolar morphologies. It is likely that the jet in those objects has already disappeared since it is expected to last only for a couple hundred years. This strengthens the idea that water fountain nebulae are undergoing a very short transition during which they develop the collimated outflows that shape the circumstellar envelopes. The oscillating pattern seen in the CO high-velocity outflow is interpreted as due to precession with a relatively small opening angle. The precession period is compatible with the period of the corkscrew pattern seen at IR wavelengths. We propose that the high-velocity molecular outflow traces the underlying primary jet that produces such a pattern.


1993 ◽  
Vol 155 ◽  
pp. 347-347
Author(s):  
R. Neri ◽  
M. Guélin ◽  
S. Guilloteau ◽  
R. Lucas ◽  
S. Garcia-Burillo ◽  
...  

Using the IRAM interferometer, we have mapped with a 2″.4 = 3″.4 resolution the J = 1 → 0 HCN line emission in the proto–planetary nebula CRL 618. Our maps resolve the 200 kms−1 molecular outflow (Cernicharo et al. 1989), as well as the slowly expanding circumstellar envelope (Bujarrabal et al. 1988), allowing a very precise positioning (≤ 0″.1) of these components with respect to the central HII region. 70% of the HCN envelope emission comes from a very compact, spherically symmetric core of size ≃ 3″.2. The core surrounds the high velocity gas which appears localized in a number of small ‘clumps’ (≤ 0″.5) – see figure. The large range of velocities observed in the ‘clumps’ suggests that we are not observing a decelerating molecular flow, but the impacts of a bipolar outflow on the slowly moving core, close to the HII region. The collision of a neutral gas outflow with high density regions (the ‘clumps’) results in the generation of dissociative shock-waves pushing and tearing the inner surface of the envelope. CRL 618 appears to have reached the stage where the stellar winds begin to disrupt and to scrape through the massive envelope, shortly before it evolves towards a Planetary Nebula.


2019 ◽  
Vol 632 ◽  
pp. A58 ◽  
Author(s):  
A. J. Rigby ◽  
T. J. T. Moore ◽  
D. J. Eden ◽  
J. S. Urquhart ◽  
S. E. Ragan ◽  
...  

The latest generation of high-angular-resolution unbiased Galactic plane surveys in molecular-gas tracers are enabling the interiors of molecular clouds to be studied across a range of environments. The CO Heterodyne Inner Milky Way Plane Survey (CHIMPS) simultaneously mapped a sector of the inner Galactic plane, within 27.8° ≲ ℓ ≲ 46.2° and |b|≤ 0°.5, in 13CO (3–2) and C18O (3–2) at an angular resolution of 15 arcsec. The combination of the CHIMPS data with 12CO (3–2) data from the CO High Resolution Survey (COHRS) has enabled us to perform a voxel-by-voxel local-thermodynamic-equilibrium (LTE) analysis, determining the excitation temperature, optical depth, and column density of 13CO at each ℓ, b, v position. Distances to discrete sources identified by FELLWALKER in the 13CO (3–2) emission maps were determined, allowing the calculation of numerous physical properties of the sources, and we present the first source catalogues in this paper. We find that, in terms of size and density, the CHIMPS sources represent an intermediate population between large-scale molecular clouds identified by CO and dense clumps seen in thermal dust continuum emission, and therefore represent the bulk transition from the diffuse to the dense phase of molecular gas. We do not find any significant systematic variations in the masses, column densities, virial parameters, mean excitation temperature, or the turbulent pressure over the range of Galactocentric distance probed, but we do find a shallow increase in the mean volume density with increasing Galactocentric distance. We find that inter-arm clumps have significantly narrower linewidths, and lower virial parameters and excitation temperatures than clumps located in spiral arms. When considering the most reliable distance-limited subsamples, the largest variations occur on the clump-to-clump scale, echoing similar recent studies that suggest that the star-forming process is largely insensitive to the Galactic-scale environment, at least within the inner disc.


2019 ◽  
Vol 628 ◽  
pp. A118 ◽  
Author(s):  
M. Bischetti ◽  
E. Piconcelli ◽  
C. Feruglio ◽  
F. Fiore ◽  
S. Carniani ◽  
...  

We report on the first ALMA observation of the CO(3−2) and rest-frame ∼340 GHz continuum emission in PDS 456, which is the most luminous, radio-quiet QSO in the local Universe (z ≃ 0.18), with a bolometric luminosity LBol ∼ 1047 erg s−1. ALMA angular resolution allowed us to map scales as small as ∼700 pc. The molecular gas reservoir traced by the core of the very bright CO(3−2) emission line is distributed in a compact rotating disk, with a size of ∼1.3 kpc, seen close to face-on (i ∼ 25 deg). Fast CO(3−2) emission in the velocity range v ∈ [ − 1000, 500] km s−1 is also present. Specifically, we detect several blue-shifted clumps out to ∼5 kpc from the nucleus, in addition to a compact (R ≲ 1.2 kpc), broad emission component. These components reveal a galaxy-wide molecular outflow, with a total mass Mmolout ∼ 2.5 × 108 M⊙ (for an αCO = 0.8 M⊙ (K km s−1 pc2)−1) and a mass outflow rate Ṁmol ∼ 290 M⊙ yr−1. The corresponding depletion time is τdep ∼ 8 Myr, shorter than the rate at which the molecular gas is converted into stars, indicating that the detected outflow is potentially able to quench star-formation in the host. The momentum flux of the molecular outflow normalised to the radiative momentum output (i.e. LBol/c) is ≲1, comparable to that of the X-ray ultra-fast outflow (UFO) detected in PDS 456. This is at odds with the expectations for an energy-conserving expansion suggested for most of the large-scale outflows detected in low-luminosity AGNs so far. We suggest three possible scenarios that may explain this observation: (i) in very luminous AGNs such as our target the molecular gas phase is tracing only a fraction of the total outflowing mass; (ii) a small coupling between the shocked gas by the UFO and the host-galaxy interstellar medium (ISM); and (iii) AGN radiation pressure may be playing an important role in driving the outflow.


Sign in / Sign up

Export Citation Format

Share Document