molecular clouds
Recently Published Documents


TOTAL DOCUMENTS

2784
(FIVE YEARS 290)

H-INDEX

124
(FIVE YEARS 14)

2021 ◽  
Vol 923 (1) ◽  
pp. 106
Author(s):  
Hai-Ming Zhang ◽  
Ruo-Yu Liu ◽  
Yang Su ◽  
Hui Zhu ◽  
Shao-Qiang Xi ◽  
...  

Abstract We present an analysis of Fermi Large Area Telescope data of the gamma-ray emission in the vicinity of a radio supernova remnant (SNR), G045.7-00.4. To study the origin of the gamma-ray emission, we also make use of the CO survey data of Milky Way Imaging Scroll Painting to study the massive molecular gas complex that surrounds the SNR. The whole size of the gigaelectronvolt emission is significantly larger than that of the radio morphology. Above 3 GeV, the gigaelectronvolt emission is resolved into two sources: one is spatially consistent with the position of the SNR with a size comparable to that of the radio emission, and the other is located outside of the western boundary of the SNR and spatially coincident with the densest region of the surrounding molecular cloud. We suggest that the gigaelectronvolt emission of the western source may arise from cosmic rays (CRs) that have escaped the SNR and illuminated the surrounding molecular cloud. We find that the gamma-ray spectra of the western source can be consistently explained by this scenario with a total energy of ∼1050 erg in escaping CRs assuming the escape is isotropic.


2021 ◽  
Vol 257 (2) ◽  
pp. 51
Author(s):  
Lixia Yuan ◽  
Ji Yang ◽  
Fujun Du ◽  
Xunchuan Liu ◽  
Shaobo Zhang ◽  
...  

Abstract We attempt to visually classify the morphologies of 18,190 molecular clouds, which are identified in the 12CO(1–0) spectral line data over ∼450 deg2 of the second Galactic quadrant from the Milky Way Imaging Scroll Painting project. Using the velocity-integrated intensity maps of the 12CO(1–0) emission, molecular clouds are first divided into unresolved and resolved ones. The resolved clouds are further classified as nonfilaments or filaments. Among the 18,190 molecular clouds, ∼25% are unresolved, ∼64% are nonfilaments, and ∼11% are filaments. In the terms of the integrated flux of 12CO(1–0) spectra of all 18,190 molecular clouds, ∼90% are from filaments, ∼9% are from nonfilaments, and the remaining ∼1% are from unresolved sources. Although nonfilaments are dominant in the number of the discrete molecular clouds, filaments are the main contributor of 12CO emission flux. We also present the number distributions of the physical parameters of the molecular clouds in our catalog, including their angular sizes, velocity spans, peak intensities of 12CO(1–0) emission, and 12CO(1–0) total fluxes. We find that there is a systematic difference between the angular sizes of the nonfilaments and filaments, with the filaments tending to have larger angular scales. The H2 column densities of them are not significantly different. We also discuss the observational effects, such as those induced by the finite spatial resolution, beam dilution, and line-of-sight projection, on the morphological classification of molecular clouds in our sample.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012011
Author(s):  
D Sakai ◽  
T Oyama ◽  
T Nagayama ◽  
H Kobayashi ◽  
M Honma

Abstract The Central Molecular Zone (CMZ) in the Galactic Center region shows outstanding non-circular motion unlike the Galactic disk. Although several models describing this non-circular motion are proposed, an uniform kinematic model of the CMZ orbit is not appeared. Three dimensional velocity information including proper motions will be critical to constrain the orbital models of the CMZ because most of models proposed are devised to reproduce the line-of-sight velocity pro les of the molecular clouds in this region. To reveal the dynamics of the Galactic center region, we conducted VLBI astrometric observations of 22 GHz water maser sources toward the Galactic center with VERA. By measuring parallaxes and proper motions, we can identify whether each source is actually located in the CMZ or not, and identify the three dimensional positions and velocities in the non-circular orbit if the source is located in the CMZ. We show the results of astrometric study for several maser sources associated with molecular clouds toward the Galactic center including Sgr B2 complex and Sgr D HII region. The parallax measurement toward Sgr B2 obtained the parallax of 0.133 0:038 mas, and its proper motions indicated that Sgr B2 complex is moving toward the positive Galactic longitude with V = 100 km s−1 relative to Sgr A*.


2021 ◽  
Vol 922 (2) ◽  
pp. 264
Author(s):  
Siyao Xu

Abstract Recent gamma-ray observations have revealed inhomogeneous diffusion of cosmic rays (CRs) in the interstellar medium (ISM). This is expected, as the diffusion of CRs depends on the properties of turbulence, which can vary widely in the multiphase ISM. We focus on the mirror diffusion arising in highly compressible turbulence in molecular clouds (MCs) around supernova remnants (SNRs), where the magnetic mirroring effect results in significant suppression of diffusion of CRs near CR sources. Significant energy loss via proton–proton interactions due to slow diffusion flattens the low-energy CR spectrum, while the high-energy CR spectrum is steepened due to the strong dependence of mirror diffusion on CR energy. The resulting broken power-law spectrum of CRs matches well the gamma-ray spectrum observed from SNR/MC systems, e.g., IC443 and W44.


Author(s):  
Duncan V. Mifsud ◽  
Perry A. Hailey ◽  
Alejandra Traspas Muiña ◽  
Olivier Auriacombe ◽  
Nigel J. Mason ◽  
...  

Stellar systems are often formed through the collapse of dense molecular clouds which, in turn, return copious amounts of atomic and molecular material to the interstellar medium. An in-depth understanding of chemical evolution during this cyclic interaction between the stars and the interstellar medium is at the heart of astrochemistry. Systematic chemical composition changes as interstellar clouds evolve from the diffuse stage to dense, quiescent molecular clouds to star-forming regions and proto-planetary disks further enrich the molecular diversity leading to the evolution of ever more complex molecules. In particular, the icy mantles formed on interstellar dust grains and their irradiation are thought to be the origin of many of the observed molecules, including those that are deemed to be “prebiotic”; that is those molecules necessary for the origin of life. This review will discuss both observational (e.g., ALMA, SOFIA, Herschel) and laboratory investigations using terahertz and far-IR (THz/F-IR) spectroscopy, as well as centimeter and millimeter spectroscopies, and the role that they play in contributing to our understanding of the formation of prebiotic molecules. Mid-IR spectroscopy has typically been the primary tool used in laboratory studies, particularly those concerned with interstellar ice analogues. However, THz/F-IR spectroscopy offers an additional and complementary approach in that it provides the ability to investigate intermolecular interactions compared to the intramolecular modes available in the mid-IR. THz/F-IR spectroscopy is still somewhat under-utilized, but with the additional capability it brings, its popularity is likely to significantly increase in the near future. This review will discuss the strengths and limitations of such methods, and will also provide some suggestions on future research areas that should be pursued in the coming decade exploiting both space-borne and laboratory facilities.


2021 ◽  
Vol 922 (2) ◽  
pp. 106
Author(s):  
J. J. Bernal ◽  
C. D. Sephus ◽  
L. M. Ziurys

Abstract The Galactic Habitable Zone (GHZ) is a region believed hospitable for life. To further constrain the GHZ, observations have been conducted of the J = 2 → 1 transitions of methanol (CH3OH) at 97 GHz, toward 20 molecular clouds located in the outer Galaxy (R GC = 12.9–23.5 kpc), using the 12 m telescope of the Arizona Radio Observatory. Methanol was detected in 19 out of 20 observed clouds, including sources as far as R GC = 23.5 kpc. Identification was secured by the measurement of multiple asymmetry and torsional components in the J = 2 → 1 transition, which were resolved in the narrow line profiles observed (ΔV 1/2 ∼ 1–3 km s−1). From a radiative transfer analysis, column densities for these clouds of N tot = 0.1–1.5 × 1013 cm−2 were derived, corresponding to fractional abundances, relative to H2, of f (CH3OH) ∼ 0.2–4.9 × 10−9. The analysis also indicates that these clouds are cold (T K ∼ 10–25 K) and dense (n(H2) ∼ 106 cm−3), as found from previous H2CO observations. The methanol abundances in the outer Galaxy are comparable to those observed in colder molecular clouds in the solar neighborhood. The abundance of CH3OH therefore does not appear to decrease significantly with distances from the Galactic Center, even at R GC ∼ 20–23 kpc. Furthermore, the production of methanol is apparently not affected by the decline in metallicity with galactocentric distance. These observations suggest that organic chemistry is prevalent in the outer Galaxy, and methanol and other organic molecules may serve to assess the GHZ.


Author(s):  
J. R. Goicoechea ◽  
F. Lique ◽  
M. G. Santa-Maria

2021 ◽  
Vol 922 (1) ◽  
pp. 79
Author(s):  
H Perry Hatchfield ◽  
Mattia C. Sormani ◽  
Robin G. Tress ◽  
Cara Battersby ◽  
Rowan J. Smith ◽  
...  

Abstract The Galactic bar plays a critical role in the evolution of the Milky Way’s Central Molecular Zone (CMZ), driving gas toward the Galactic Center via gas flows known as dust lanes. To explore the interaction between the CMZ and the dust lanes, we run hydrodynamic simulations in arepo, modeling the potential of the Milky Way’s bar in the absence of gas self-gravity and star formation physics, and we study the flows of mass using Monte Carlo tracer particles. We estimate the efficiency of the inflow via the dust lanes, finding that only about a third (30% ± 12%) of the dust lanes’ mass initially accretes onto the CMZ, while the rest overshoots and accretes later. Given observational estimates of the amount of gas within the Milky Way’s dust lanes, this suggests that the true total inflow rate onto the CMZ is 0.8 ± 0.6 M ⊙ yr−1. Clouds in this simulated CMZ have sudden peaks in their average density near the apocenter, where they undergo violent collisions with inflowing material. While these clouds tend to counter-rotate due to shear, co-rotating clouds occasionally occur due to the injection of momentum from collisions with inflowing material (∼52% are strongly counter-rotating, and ∼7% are strongly co-rotating of the 44 cloud sample). We investigate the formation and evolution of these clouds, finding that they are fed by many discrete inflow events, providing a consistent source of gas to CMZ clouds even as they collapse and form stars.


2021 ◽  
Vol 921 (2) ◽  
pp. 168
Author(s):  
Susanne Pfalzner ◽  
Dylan Paterson ◽  
Michele T. Bannister ◽  
Simon Portegies Zwart

Abstract Interstellar objects (ISOs), the parent population of 1i/‘Oumuamua and 2i/Borisov, are abundant in the interstellar medium of the Milky Way. This means that the interstellar medium, including molecular-cloud regions, has three components: gas, dust, and ISOs. From observational constraints of the field density of ISOs drifting in the solar neighborhood, we infer that a typical molecular cloud of 10 pc diameter contains some 1018 ISOs. At typical sizes ranging from hundreds of meters to tens of kilometers, ISOs are entirely decoupled from the gas dynamics in these molecular clouds. Here we address the question of whether ISOs can follow the collapse of molecular clouds. We perform low-resolution simulations of the collapse of molecular clouds containing initially static ISO populations toward the point where stars form. In this proof-of-principle study, we find that the interstellar objects definitely follow the collapse of the gas—and many become bound to the new-forming numerical approximations to future stars (sinks). At minimum, 40% of all sinks have one or more ISO test particles gravitationally bound to them for the initial ISO distributions tested here. This value corresponds to at least 1010 actual ISOs being bound after three initial freefall times. Thus, ISOs are a relevant component of star formation. We find that more massive sinks bind disproportionately large fractions of the initial ISO population, implying competitive capture of ISOs. Sinks can also be solitary, as their ISOs can become unbound again—particularly if sinks are ejected from the system. Emerging planetary systems will thus develop in remarkably varied environments, ranging from solitary to richly populated with bound ISOs.


2021 ◽  
Vol 922 (1) ◽  
pp. 8
Author(s):  
Qing-Zeng Yan ◽  
Ji Yang ◽  
Yang Su ◽  
Yan Sun ◽  
Ye Xu ◽  
...  

Abstract The principle of the background-eliminated extinction-parallax (BEEP) method is examining the extinction difference between on- and off-cloud regions to reveal the extinction jump caused by molecular clouds, thereby revealing the distance in complex dust environments. The BEEP method requires high-quality images of molecular clouds and high-precision stellar parallaxes and extinction data, which can be provided by the Milky Way Imaging Scroll Painting (MWISP) CO survey and the Gaia DR2 catalog, as well as supplementary A V extinction data. In this work, the BEEP method is further improved (BEEP-II) to measure molecular cloud distances in a global search manner. Applying the BEEP-II method to three regions mapped by the MWISP CO survey, we collectively measured 238 distances for 234 molecular clouds. Compared with previous BEEP results, the BEEP-II method measures distances efficiently, particularly for those molecular clouds with large angular size or in complicated environments, making it suitable for distance measurements of molecular clouds in large samples.


Sign in / Sign up

Export Citation Format

Share Document