On the integrability of intermediate distributions for Anosov diffeomorphisms

1995 ◽  
Vol 15 (2) ◽  
pp. 317-331 ◽  
Author(s):  
M. Jiang ◽  
Ya B. Pesin ◽  
R. de la Llave

AbstractWe study the integrability of intermediate distributions for Anosov diffeomorphisms and provide an example of a C∞-Anosov diffeomorphism on a three-dimensional torus whose intermediate stable foliation has leaves that admit only a finite number of derivatives. We also show that this phenomenon is quite abundant. In dimension four or higher this can happen even if the Lyapunov exponents at periodic orbits are constant.

Nineteenth century arithmetic is used to study periodic orbits of Anosov diffeomorphisms of the two-dimensional torus. We find that the period of the orbits, as well as their dynamical behaviour, are intimately related to the way ideals factorize in algebraic number fields.


2020 ◽  
Vol 15 (11) ◽  
Author(s):  
Nataliya V. Stankevich ◽  
Natalya A. Shchegoleva ◽  
Igor R. Sataev ◽  
Alexander P. Kuznetsov

Abstract Using an example a system of two coupled generators of quasi-periodic oscillations, we study the occurrence of chaotic dynamics with one positive, two zero, and several negative Lyapunov exponents. It is shown that such dynamic arises as a result of a sequence of bifurcations of two-frequency torus doubling and involves saddle tori occurring at their doublings. This transition is associated with typical structure of parameter plane, like cross-road area and shrimp-shaped structures, based on the two-frequency quasi-periodic dynamics. Using double Poincaré section, we have shown destruction of three-frequency torus.


Author(s):  
R. A. Crowther

The reconstruction of a three-dimensional image of a specimen from a set of electron micrographs reduces, under certain assumptions about the imaging process in the microscope, to the mathematical problem of reconstructing a density distribution from a set of its plane projections.In the absence of noise we can formulate a purely geometrical criterion, which, for a general object, fixes the resolution attainable from a given finite number of views in terms of the size of the object. For simplicity we take the ideal case of projections collected by a series of m equally spaced tilts about a single axis.


2021 ◽  
Vol 29 (6) ◽  
pp. 863-868
Author(s):  
Danila Shubin ◽  
◽  

The purpose of this study is to establish the topological properties of three-dimensional manifolds which admit Morse – Smale flows without fixed points (non-singular or NMS-flows) and give examples of such manifolds that are not lens spaces. Despite the fact that it is known that any such manifold is a union of circular handles, their topology can be investigated additionally and refined in the case of a small number of orbits. For example, in the case of a flow with two non-twisted (having a tubular neighborhood homeomorphic to a solid torus) orbits, the topology of such manifolds is established exactly: any ambient manifold of an NMS-flow with two orbits is a lens space. Previously, it was believed that all prime manifolds admitting NMS-flows with at most three non-twisted orbits have the same topology. Methods. In this paper, we consider suspensions over Morse – Smale diffeomorphisms with three periodic orbits. These suspensions, in turn, are NMS-flows with three periodic trajectories. Universal coverings of the ambient manifolds of these flows and lens spaces are considered. Results. In this paper, we present a countable set of pairwise distinct simple 3-manifolds admitting NMS-flows with exactly three non-twisted orbits. Conclusion. From the results of this paper it follows that there is a countable set of pairwise distinct three-dimensional manifolds other than lens spaces, which refutes the previously published result that any simple orientable manifold admitting an NMS-flow with at most three orbits is lens space.


1983 ◽  
Vol 74 ◽  
pp. 213-224
Author(s):  
I.A. Robin ◽  
V.V. Markellos

AbstractA linearised treatment is presented of vertical bifurcations of symmetric periodic orbits(bifurcations of plane with three-dimensional orbits) in the circular restricted problem. Recent work on bifurcations from vertical-critical orbits (av = ±1) is extended to deal with the v more general situation of bifurcations from vertical self-resonant orbits (av = cos(2Πn/m) for integer m,n) and it is shown that in this more general case bifurcating families of three-dimensional orbits always occur in pairs, the orbital symmetry properties being governed by the evenness or oddness of the integer m. The applicability of the theory to the elliptic restricted problem is discussed.


Sign in / Sign up

Export Citation Format

Share Document