Markov systems and transfer operators associated with cofinite Fuchsian groups

1997 ◽  
Vol 17 (5) ◽  
pp. 1147-1181 ◽  
Author(s):  
TAKEHIKO MORITA

In this paper we study a generalization of Mayer's result on the Selberg zeta function of $PSL(2, {\Bbb Z})$. Let $\Gamma$ be a cofinite Fuchsian group. We construct a Markov system ${\cal T}_{\Gamma}$ by modifying the Bowen–Series construction of a Markov map $T_{\Gamma}$ associated with $\Gamma$. The Markov system enables us to define transfer operators $L(s)$ for ${\cal T}_{\Gamma}$ so that they determine a meromorphic function taking values with nuclear operators on a nice function space. We show that the Selberg zeta function $Z(s)$ of $\Gamma$ has a determinant representation $Z(s)=\Det(I-L(s))F(s)$, where $\Det(I-L(s))$ is the Fredholm determinant of $L(s)$ and $F(s)$ is a meromorphic function depending only on a finite number of hyperbolic conjugacy classes of $\Gamma$. Combining such a representation and the investigation of the spectral properties of $L(s)$, we can also obtain some analytic information of $Z(s)$.

2011 ◽  
Vol 33 (1) ◽  
pp. 247-283 ◽  
Author(s):  
M. MÖLLER ◽  
A. D. POHL

AbstractWe characterize Maass cusp forms for any cofinite Hecke triangle group as 1-eigenfunctions of appropriate regularity of a transfer operator family. This transfer operator family is associated to a certain symbolic dynamics for the geodesic flow on the orbifold arising as the orbit space of the action of the Hecke triangle group on the hyperbolic plane. Moreover, we show that the Selberg zeta function is the Fredholm determinant of the transfer operator family associated to an acceleration of this symbolic dynamics.


1996 ◽  
Vol 16 (4) ◽  
pp. 805-819 ◽  
Author(s):  
Hans Henrik Rugh

AbstractWe consider a generalized Fredholm determinant d(z) and a generalized Selberg zeta function ζ(ω)−1 for Axiom A diffeomorphisms of a surface and Axiom A flows on three-dimensional manifolds, respectively. We show that d(z) and ζ(ω)−1 extend to entire functions in the complex plane. That the functions are entire and not only meromorphic is proved by a new method, identifying removable singularities by a change of Markov partitions.


Author(s):  
Louis Soares

AbstractWe consider the family of Hecke triangle groups $$ \Gamma _{w} = \langle S, T_w\rangle $$ Γ w = ⟨ S , T w ⟩ generated by the Möbius transformations $$ S : z\mapsto -1/z $$ S : z ↦ - 1 / z and $$ T_{w} : z \mapsto z+w $$ T w : z ↦ z + w with $$ w > 2.$$ w > 2 . In this case, the corresponding hyperbolic quotient $$ \Gamma _{w}\backslash {\mathbb {H}}^2 $$ Γ w \ H 2 is an infinite-area orbifold. Moreover, the limit set of $$ \Gamma _w $$ Γ w is a Cantor-like fractal whose Hausdorff dimension we denote by $$ \delta (w). $$ δ ( w ) . The first result of this paper asserts that the twisted Selberg zeta function $$ Z_{\Gamma _{ w}}(s, \rho ) $$ Z Γ w ( s , ρ ) , where $$ \rho : \Gamma _{w} \rightarrow \mathrm {U}(V) $$ ρ : Γ w → U ( V ) is an arbitrary finite-dimensional unitary representation, can be realized as the Fredholm determinant of a Mayer-type transfer operator. This result has a number of applications. We study the distribution of the zeros in the half-plane $$\mathrm {Re}(s) > \frac{1}{2}$$ Re ( s ) > 1 2 of the Selberg zeta function of a special family of subgroups $$( \Gamma _w^N )_{N\in {\mathbb {N}}} $$ ( Γ w N ) N ∈ N of $$\Gamma _w$$ Γ w . These zeros correspond to the eigenvalues of the Laplacian on the associated hyperbolic surfaces $$X_w^N = \Gamma _w^N \backslash {\mathbb {H}}^2$$ X w N = Γ w N \ H 2 . We show that the classical Selberg zeta function $$Z_{\Gamma _w}(s)$$ Z Γ w ( s ) can be approximated by determinants of finite matrices whose entries are explicitly given in terms of the Riemann zeta function. Moreover, we prove an asymptotic expansion for the Hausdorff dimension $$\delta (w)$$ δ ( w ) as $$w\rightarrow \infty $$ w → ∞ .


2018 ◽  
Vol 2020 (3) ◽  
pp. 781-812
Author(s):  
Semyon Dyatlov ◽  
Maciej Zworski

Abstract We show directly that the fractal uncertainty principle of Bourgain–Dyatlov [3] implies that there exists σ > 0 for which the Selberg zeta function (1.2) for a convex co-compact hyperbolic surface has only finitely many zeros with $ \textrm{Re}\, s \geq \frac 12 - \sigma $. That eliminates advanced microlocal techniques of Dyatlov–Zahl [6], though we stress that these techniques are still needed for resolvent bounds and for possible generalizations to the case of nonconstant curvature.


2016 ◽  
Vol 228 ◽  
pp. 21-71 ◽  
Author(s):  
JAY JORGENSON ◽  
LEJLA SMAJLOVIĆ

We study the distribution of zeros of the derivative of the Selberg zeta function associated to a noncompact, finite volume hyperbolic Riemann surface $M$. Actually, we study the zeros of $(Z_{M}H_{M})^{\prime }$, where $Z_{M}$ is the Selberg zeta function and $H_{M}$ is the Dirichlet series component of the scattering matrix, both associated to an arbitrary finite volume hyperbolic Riemann surface $M$. Our main results address finiteness of number of zeros of $(Z_{M}H_{M})^{\prime }$ in the half-plane $\operatorname{Re}(s)<1/2$, an asymptotic count for the vertical distribution of zeros, and an asymptotic count for the horizontal distance of zeros. One realization of the spectral analysis of the Laplacian is the location of the zeros of $Z_{M}$, or, equivalently, the zeros of $Z_{M}H_{M}$. Our analysis yields an invariant $A_{M}$ which appears in the vertical and weighted vertical distribution of zeros of $(Z_{M}H_{M})^{\prime }$, and we show that $A_{M}$ has different values for surfaces associated to two topologically equivalent yet different arithmetically defined Fuchsian groups. We view this aspect of our main theorem as indicating the existence of further spectral phenomena which provides an additional refinement within the set of arithmetically defined Fuchsian groups.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Victoria Martin ◽  
Andrew Svesko

The heat kernel and quasinormal mode methods of computing 1-loop partition functions of spin ss fields on hyperbolic quotient spacetimes \mathbb{H}^{3}/\mathbb{Z}ℍ3/ℤ are related via the Selberg zeta function. We extend that analysis to thermal \text{AdS}_{2n+1}AdS2n+1 backgrounds, with quotient structure \mathbb{H}^{2n+1}/\mathbb{Z}ℍ2n+1/ℤ. Specifically, we demonstrate the zeros of the Selberg function encode the normal mode frequencies of spin fields upon removal of non-square-integrable modes. With this information we construct the 1-loop partition functions for symmetric transverse traceless tensors in terms of the Selberg zeta function and find exact agreement with the heat kernel method.


Sign in / Sign up

Export Citation Format

Share Document