scholarly journals A VLBI Study of H2O Maser Spots Associated with a Molecular Outflow ρ Oph-East

1994 ◽  
Vol 140 ◽  
pp. 60-61
Author(s):  
Takahiro Iwata ◽  
Hiroshi Takaba ◽  
Kin-Ya Matsumoto ◽  
Seiji Kameno ◽  
Noriyuki Kawaguchi

A molecular outflow is one of the most conspicuous active phenomena associated with protostars, and the kinetic energy of its outflowing mass is as large as that of random motions of ambient molecular cloud, which suggests that outflow has dynamically influence on ambient molecular gas. Possible observational evidence which suggests the existence of dynamical interaction between molecular outflow and ambient molecular cloud has been detected in several star forming regions (Fukui et al. 1986; Iwata et al. 1988). Recent detections of H2O maser emission associated with low-mass protostars (e.g. Comoretto et al. 1990) also suggest that there still exist active phenomena in the low-mass star forming regions.Molecular outflow ρ Oph-East, discovered toward a low-mass protostar IRAS 16293-2422 (Fukui et al. 1986), has been known as a site of dynamical interaction between molecular outflowing gas and ambient molecular cloud by CO and NH3 observation (Mizuno et al. 1990). Existence of several strong H2O maser spots (Wilking & Claussen 1987; Wotten 1989; Terebey et al. 1992) also suggests that active phenomena are occurring in this region. In this paper, we report our result of H2O maser observation for molecular outflow ρ Oph-East with milli-arcsecond resolution by VLBI.

1994 ◽  
Vol 161 ◽  
pp. 470-472
Author(s):  
M. Kun

Radio molecular observations in the millimeter wavelength region in the last decade have revealed a number of giant molecular cloud complexes at relatively high galactic latitudes. Examples for such cloud complexes are Cepheus Flare (Lebrun 1986), and Ursa Major and Camelopardalis clouds (Heithausen et al. 1993). Because of their high galactic latitudes, these cloud complexes probably belong to the nearest molecular clouds and among them we may find some nearby regions of low-mass star formation.


2021 ◽  
Vol 923 (1) ◽  
pp. L20
Author(s):  
Xi Chen ◽  
Zhi-Yuan Ren ◽  
Da-Lei Li ◽  
Tie Liu ◽  
Ke Wang ◽  
...  

Abstract We report the detection of a chemically fresh inflow that is feeding high-mass young-stellar-object (HMYSO) growth in the nearby high-mass star-forming region G352.63 made with both the Atacama Large Millimeter/submillimeter Array (ALMA) and the Submillimeter Array (SMA). High-quality images of the dust and molecular lines from both ALMA and SMA have consistently revealed a gravitationally controlled cold (∼10 K) gas inflow of chemically fresh molecules (e.g., CCH and HC3N) toward the central HMYSO and its surrounding dense gas structure, which has a possible torus- or disk-like morphology. The HMYSO is also observed to have an outflow, which is nearly perpendicular to the torus and its parental filament, and thus can be clearly separated from the inflows. These kinematic features provide observational evidence to support the conjecture that the infalling streamers in high-mass star-forming regions could proceed in a similar process to that observed in low-mass counterparts. The chemically fresh infalling streamers could also be involved in the disk or torus configuration, fragmentation, and accretion bursts that occur in both simulations and observations.


2018 ◽  
Vol 609 ◽  
pp. A125 ◽  
Author(s):  
M. Wienen ◽  
F. Wyrowski ◽  
K. M. Menten ◽  
J. S. Urquhart ◽  
C. M. Walmsley ◽  
...  

Context. The initial conditions of molecular clumps in which high-mass stars form are poorly understood. In particular, a more detailed study of the earliest evolutionary phases is needed. The APEX Telescope Large Area Survey of the whole inner Galactic disk at 870 μm, ATLASGAL, has therefore been conducted to discover high-mass star-forming regions at different evolutionary phases. Aims. We derive properties such as velocities, rotational temperatures, column densities, and abundances of a large sample of southern ATLASGAL clumps in the fourth quadrant. Methods. Using the Parkes telescope, we observed the NH3 (1, 1) to (3, 3) inversion transitions towards 354 dust clumps detected by ATLASGAL within a Galactic longitude range between 300° and 359° and a latitude within ± 1.5°. For a subsample of 289 sources, the N2H+ (1–0) line was measured with the Mopra telescope. Results. We measured a median NH3 (1, 1) line width of ~ 2 km s-1, rotational temperatures from 12 to 28 K with a mean of 18 K, and source-averaged NH3 abundances from 1.6 × 10-6 to 10-8. For a subsample with detected NH3 (2, 2) hyperfine components, we found that the commonly used method to compute the (2, 2) optical depth from the (1, 1) optical depth and the (2, 2) to (1, 1) main beam brightness temperature ratio leads to an underestimation of the rotational temperature and column density. A larger median virial parameter of ~ 1 is determined using the broader N2H+ line width than is estimated from the NH3 line width of ~ 0.5 with a general trend of a decreasing virial parameter with increasing gas mass. We obtain a rising NH3 (1, 1)/N2H+ line-width ratio with increasing rotational temperature. Conclusions. A comparison of NH3 line parameters of ATLASGAL clumps to cores in nearby molecular clouds reveals smaller velocity dispersions in low-mass than high-mass star-forming regions and a warmer surrounding of ATLASGAL clumps than the surrounding of low-mass cores. The NH3 (1, 1) inversion transition of 49% of the sources shows hyperfine structure anomalies. The intensity ratio of the outer hyperfine structure lines with a median of 1.27 ± 0.03 and a standard deviation of 0.45 is significantly higher than 1, while the intensity ratios of the inner satellites with a median of 0.9 ± 0.02 and standard deviation of 0.3 and the sum of the inner and outer hyperfine components with a median of 1.06 ± 0.02 and standard deviation of 0.37 are closer to 1.


2010 ◽  
Vol 6 (S270) ◽  
pp. 103-106
Author(s):  
R. Rao ◽  
J.-M. Girart ◽  
D. P. Marrone

AbstractThere have been a number of theoretical and computational models which state that magnetic fields play an important role in the process of star formation. Competing theories instead postulate that it is turbulence which is dominant and magnetic fields are weak. The recent installation of a polarimetry system at the Submillimeter Array (SMA) has enabled us to conduct observations that could potentially distinguish between the two theories. Some of the nearby low mass star forming regions show hour-glass shaped magnetic field structures that are consistent with theoretical models in which the magnetic field plays a dominant role. However, there are other similar regions where no significant polarization is detected. Future polarimetry observations made by the Submillimeter Array should be able to increase the sample of observed regions. These measurements will allow us to address observationally the important question of the role of magnetic fields and/or turbulence in the process of star formation.


2000 ◽  
Vol 197 ◽  
pp. 61-70
Author(s):  
Nagayoshi Ohashi

We have carried out interferometric observations of pre-protostellar and protostellar envelopes in Taurus. Protostellar envelopes are dense gaseous condensations with young stellar objects or protostars, while pre-protostellar envelopes are those without any known young stellar objects. Five pre-protostellar envelopes have been observed in CCS JN=32–21, showing flattened and clumpy structures of the envelopes. The observed CCS spectra show moderately narrow line widths, ~0.1 to ~0.35 km s–1. One pre-protostellar envelope, L1544, shows a remarkable velocity pattern, which can be explained in terms of infall and rotation. Our C18O J=1–0 observations of 8 protostellar envelopes show that they have also flattened structures like pre-protostellar envelopes but no clumpy structures. Four out the eight envelopes show velocity patterns that can be explained by motions of infall (and rotation). Physical properties of pre-protostellar and protostellar envelopes are discussed in detail.


2019 ◽  
Vol 629 ◽  
pp. A77
Author(s):  
A. I. Gómez-Ruiz ◽  
A. Gusdorf ◽  
S. Leurini ◽  
K. M. Menten ◽  
S. Takahashi ◽  
...  

Context. OMC-2/3 is one of the nearest embedded cluster-forming regions that includes intermediate-mass protostars at early stages of evolution. A previous CO (3–2) mapping survey towards this region revealed outflow activity related to sources at different evolutionary phases. Aims. The present work presents a study of the warm gas in the high-velocity emission from several outflows found in CO (3–2) emission by previous observations, determines their physical conditions, and makes a comparison with previous results in low-mass star-forming regions. Methods. We used the CHAMP+ heterodyne array on the APEX telescope to map the CO (6–5) and CO (7–6) emission in the OMC-2 FIR 6 and OMC-3 MMS 1-6 regions, and to observe 13CO (6–5) at selected positions. We analyzed these data together with previous CO (3–2) observations. In addition, we mapped the SiO (5–4) emission in OMC-2 FIR 6. Results. The CO (6–5) emission was detected in most of the outflow lobes in the mapped regions, while the CO (7–6) was found mostly in the OMC-3 outflows. In the OMC-3 MMS 5 outflow, a previously undetected extremely high-velocity gas was found in CO (6–5). This extremely high-velocity emission arises from the regions close to the central object MMS 5. Radiative transfer models revealed that the high-velocity gas from MMS 5 outflow consists of gas with nH2 = 104–105 cm−3 and T > 200 K, similar to what is observed in young Class 0 low-mass protostars. For the other outflows, values of nH2 > 104 cm−3 were found. Conclusions. The physical conditions and kinematic properties of the young intermediate-mass outflows presented here are similar to those found in outflows from Class 0 low-mass objects. Due to their excitation requirements, mid − J CO lines are good tracers of extremely high-velocity gas in young outflows likely related to jets.


Author(s):  
K. Altwegg ◽  
H. Balsiger ◽  
J. J. Berthelier ◽  
A. Bieler ◽  
U. Calmonte ◽  
...  

The European Rosetta mission has been following comet 67P/Churyumov–Gerasimenko for 2 years, studying the nucleus and coma in great detail. For most of these 2 years the Rosetta Orbiter Sensor for Ion and Neutral Analysis (ROSINA) has analysed the volatile part of the coma. With its high mass resolution and sensitivity it was able to not only detect deuterated water HDO, but also doubly deuterated water, D 2 O and deuterated hydrogen sulfide HDS. The ratios for [HDO]/[H 2 O], [D 2 O]/[HDO] and [HDS]/[H 2 S] derived from our measurements are (1.05 ± 0.14) × 10 −3 , (1.80 ± 0.9) × 10 −2 and (1.2 ± 0.3) × 10 −3 , respectively. These results yield a very high ratio of 17 for [D 2 O]/[HDO] relative to [HDO]/[H 2 O]. Statistically one would expect just 1/4. Such a high value can be explained by cometary water coming unprocessed from the presolar cloud, where water is formed on grains, leading to high deuterium fractionation. The high [HDS]/[H 2 S] ratio is compatible with upper limits determined in low-mass star-forming regions and also points to a direct correlation of cometary H 2 S with presolar grain surface chemistry. This article is part of the themed issue ‘Cometary science after Rosetta’.


2018 ◽  
Vol 615 ◽  
pp. A88 ◽  
Author(s):  
Eva G. Bøgelund ◽  
Brett A. McGuire ◽  
Niels F. W. Ligterink ◽  
Vianney Taquet ◽  
Crystal L. Brogan ◽  
...  

Context. The abundance of deuterated molecules in a star-forming region is sensitive to the environment in which they are formed. Deuteration fractions, in other words the ratio of a species containing D to its hydrogenated counterpart, therefore provide a powerful tool for studying the physical and chemical evolution of a star-forming system. While local low-mass star-forming regions show very high deuteration ratios, much lower fractions are observed towards Orion and the Galactic centre. Astration of deuterium has been suggested as a possible cause for low deuteration in the Galactic centre. Aims. We derive methanol deuteration fractions at a number of locations towards the high-mass star-forming region NGC 6334I, located at a mean distance of 1.3 kpc, and discuss how these can shed light on the conditions prevailing during its formation. Methods. We use high sensitivity, high spatial and spectral resolution observations obtained with the Atacama Large Millimeter/ submillimeter Array to study transitions of the less abundant, optically thin, methanol-isotopologues: 13CH3OH, CH318OH, CH2DOH and CH3OD, detected towards NGC 6334I. Assuming local thermodynamic equilibrium (LTE) and excitation temperatures of ~120–330 K, we derive column densities for each of the species and use these to infer CH2DOH/CH3OH and CH3OD/CH3OH fractions. Results. We derive column densities in a range of (0.8–8.3) × 1017 cm−2 for 13CH3OH, (0.13–3.4) × 1017 cm−2 for CH318OH, (0.03–1.63) × 1017 cm−2 for CH2DOH and (0.15–5.5) × 1017 cm−2 for CH3OD in a ~1″ beam. Interestingly, the column densities of CH3OD are consistently higher than those of CH2DOH throughout the region by factors of 2–15. We calculate the CH2DOH to CH3OH and CH3OD to CH3OH ratios for each of the sampled locations in NGC 6334I. These values range from 0.03% to 0.34% for CH2DOH and from 0.27% to 1.07% for CH3OD if we use the 13C isotope of methanol as a standard; using the 18 O-methanol as a standard, decreases the ratios by factors of between two and three. Conclusions. All regions studied in this work show CH2DOH/CH3OH as well as CH2DOH/CH3OD values that are considerably lower than those derived towards low-mass star-forming regions and slightly lower than those derived for the high-mass star-forming regions in Orion and the Galactic centre. The low ratios indicate a grain surface temperature during formation ~30 K, for which the efficiency of the formation of deuterated species is significantly reduced. Therefore, astration of deuterium in the Galactic centre cannot be the explanation for its low deuteration ratio but rather the high temperatures characterising the region.


2001 ◽  
Vol 200 ◽  
pp. 117-121 ◽  
Author(s):  
Ralf Launhardt

The Bok globule CB230 (L1177) contains an active, low-mass star-forming core which is associated with a double NIR reflection nebula, a collimated bipolar molecular outflow, and strong mm continuum emission. The morphology of the NIR nebula suggests the presence of a deeply embedded, wide binary protostellar system. High-angular resolution observations now reveal the presence of two sub-cores, two distinct outflow centers, and an embedded accretion disk associated with the western bipolar NIR nebula. Judging from the separation and specific angular momentum, the CB230 double protostar system probably results from core fragmentation and will end up at the upper end of the pre-main sequence binary separation distribution.


2019 ◽  
Vol 621 ◽  
pp. A114 ◽  
Author(s):  
Olena Zakharenko ◽  
Frank Lewen ◽  
Vadim V. Ilyushin ◽  
Maria N. Drozdovskaya ◽  
Jes K. Jørgensen ◽  
...  

Methyl mercaptan (also known as methanethiol), CH3SH, has been found in the warm and dense parts of high- as well as low- mass star-forming regions. The aim of the present study is to obtain accurate spectroscopic parameters of the S-deuterated methyl mercaptan CH3SD to facilitate astronomical observations by radio telescope arrays at (sub)millimeter wavelengths. We have measured the rotational spectrum associated with the large-amplitude internal rotation of the methyl group of methyl mercaptan using an isotopically enriched sample in the 150−510 GHz frequency range using the Köln millimeter wave spectrometer. The analysis of the spectra has been performed up to the second excited torsional state. We present modeling results of these data with the RAM36 program. CH3SD was searched for, but not detected, in data from the Atacama Large Millimeter/submillimeter Array (ALMA) Protostellar Interferometric Line Survey (PILS) of the deeply embedded protostar IRAS 16293−2422. The derived upper limit corresponds to a degree of deuteration of at most ∼18%.


Sign in / Sign up

Export Citation Format

Share Document