scholarly journals Fission and the Origin of Binary Stars

1970 ◽  
Vol 4 ◽  
pp. 147-156
Author(s):  
Jeremiah P. Ostriker

AbstractBrief reviews of the classical ‘angular momentum problem’ and the statistics of upper-main-sequence binaries are presented as background for the suggestion that the close, early-type, binaries are produced by fission of rapidly rotating protostars.Next, theoretical sequences of contracting, rotating stars are described. Recent work demonstrates that the zero-viscosity, polytropic sequences, have essentially the same properties as the McLaurin sequence. Thus, fission is possible for centrally condensed stars. Observations of close early-type binaries are compared with theoretical predictions for the minimum angular momentum in binary systems of given total mass; the agreement is excellent.Finally, the existing theoretical objections to the fission hypothesis for the origin of binary stars are reviewed, and it is concluded that, although fission remains unproven, there are now no strong theoretical arguments against the process, and there is considerable observational support for its existence.

1989 ◽  
Vol 8 ◽  
pp. 137-138
Author(s):  
J. E. Tohline

AbstractFor a given mass M and environmental temperature T, there is a well-defined angular momentum Jmax above which physical systems cannot exist as self-gravitating entities. The quantity Jmax α M2 T−½. Observations of J and M in young binary systems should put useful constraints on the temperature of the medium from which they formed.


1992 ◽  
Vol 151 ◽  
pp. 9-19
Author(s):  
Peter Bodenheimer

Recent observational studies of the properties of binary systems among young stars indicate that the majority of binaries are formed very early in the history of a star, perhaps during the protostellar collapse. Major observational facts to be explained include the overall binary frequency, the non-negligible occurrence of multiple systems, and the distributions of period, eccentricity, and mass ratio among the individual binaries. Theoretical calculations of the collapse of rotating protostars during the isothermal phase indicate instability to fragmentation into multiple systems. This process in general produces systems with periods greater than a few hundred years, although somewhat shorter periods are possible. Fragmentation during later, optically thick, phases of collapse tends to be suppressed by pressure effects. Therefore, major theoretical problems remain concerning the origin of close binaries. Fission of rapidly rotating stars, tidal capture, and three-body capture have been shown to be improbable mechanisms for formation of close binaries. Mechanisms currently under study include gravitational instabilities in disks, orbital interactions and disk-induced captures in fragmented multiple systems, hierarchical fragmentation, and orbital decay of long-period systems. Single stars, on the other hand, could result by escape from multiple systems or by the collapse of clouds of low angular momentum, coupled with angular momentum transport after disk formation.


1976 ◽  
Vol 73 ◽  
pp. 381-387 ◽  
Author(s):  
P. Biermann ◽  
D. S. Hall

We consider six possible origins for the RS CVn binaries based on the following possibilities. RS CVn binaries might now be either pre-main-sequence or post-main-sequence. A pre-main-sequence binary might not always have been a binary but might have resulted from fission of a rapidly rotating single pre-main-sequence star. The main-sequence counterparts might be either single stars or binaries.To decide which of the six origins is possible, we consider the following observed data for the RS CVn binaries: total mass, total angular momentum, lack of observed connection with regions of star formation, large space density, kinematical age, and the visual companion of WW Dra. In addition we consider lifetimes and space densities of single stars and other types of binaries.The only origin possible is that the RS CVn binaries are in a thermal phase following fission of a main-sequence single star. In this explanation the single star had a rapidly rotating core which became unstable due to the core contraction which made it begin to evolve off the main sequence. The present Be stars might be examples of such parent single stars.


2004 ◽  
Vol 215 ◽  
pp. 170-176
Author(s):  
S. Meibom ◽  
R. D. Mathieu

We present an ongoing study on tidal interactions in late-type close binary stars. New results on tidal circularization are combined with existing data to test and constrain theoretical predictions of tidal circularization in the pre-main-sequence (PMS) phase and throughout the main-sequence phase of stellar evolution. Current data suggest that tidal circularization during the PMS phase sets the tidal cutoff period for binary populations younger than ~ 1 Gyr. Binary populations older than ~ 1 Gyr show increasing tidal cutoff periods with age, consistent with active main-sequence tidal circularization.


1994 ◽  
Vol 162 ◽  
pp. 147-148
Author(s):  
J. Fliegner ◽  
N. Langer

The way rotation influences the main sequence evolution of early type stars depends strongly on their internal angular momentum distribution. Their convective core mass is not always decreased as a consequence of a reduced “effective mass” due to rotation, since rotation laws close to uniform specific angular momentum may increase Δrad and thereby the convective core mass (Clement). In addition, rotationally induced mixing processes may redistribute angular momentum and chemical elements inside the stars (e.g. Endal & Sofia 1978).


2004 ◽  
Vol 215 ◽  
pp. 113-122 ◽  
Author(s):  
Robert D. Mathieu

Major photometric monitoring campaigns of star-forming regions in the past decade have provided rich rotation period distributions of pre-main-sequence stars. The rotation periods span more than an order of magnitude in period, with most falling between 1 and 10 days. Thus the broad rotation period distributions found in 100 Myr clusters are already established by an age of 1 Myr. The most rapidly rotating stars are within a factor of 2-3 of their critical velocities; if angular momentum is conserved as they evolve to the ZAMS, these stars may come to exceed their critical velocities. Extensive efforts have been made to find connections between stellar rotation and the presence of protostellar disks; at best only a weak correlation has been found in the largest samples. Magnetic disk-locking is a theoretically attractive mechanism for angular momentum evolution of young stars, but the links between theoretical predictions and observational evidence remain ambiguous. Detailed observational and theoretical studies of the magnetospheric environments will provide better insight into the processes of pre-main-sequence stellar angular momentum evolution.


1980 ◽  
Vol 88 ◽  
pp. 511-515
Author(s):  
Kyoji Nariai

When there is mass loss from a binary system, the lost mass carries energy and angular momentum out of the system. Therefore, the remaining system must adjust its orbital parameters to the changing values of the total kinematic energy E and the total angular momentum N as the total mass M decreases. The parameters concerned here are : the fractional mass μ, the semi-major axis a, and the eccentricity e.


2019 ◽  
Vol 625 ◽  
pp. A89 ◽  
Author(s):  
D. Gagnier ◽  
M. Rieutord ◽  
C. Charbonnel ◽  
B. Putigny ◽  
F. Espinosa Lara

The understanding of the rotational evolution of early-type stars is deeply related to that of anisotropic mass and angular momentum loss. In this paper, we aim to clarify the rotational evolution of rapidly rotating early-type stars along the main sequence (MS). We have used the 2D ESTER code to compute and evolve isolated rapidly rotating early-type stellar models along the MS, with and without anisotropic mass loss. We show that stars with Z = 0.02 and masses between 5 and 7 M⊙ reach criticality during the main sequence provided their initial angular velocity is larger than 50% of the Keplerian one. More massive stars are subject to radiation-driven winds and to an associated loss of mass and angular momentum. We find that this angular momentum extraction from the outer layers can prevent massive stars from reaching critical rotation and greatly reduce the degree of criticality at the end of the MS. Our model includes the so-called bi-stability jump of the Ṁ − Teff relation of 1D-models. This discontinuity now shows up in the latitude variations of the mass-flux surface density, endowing rotating massive stars with either a single-wind regime (no discontinuity) or a two-wind regime (a discontinuity). In the two-wind regime, mass loss and angular momentum loss are strongly increased at low latitudes inducing a faster slow-down of the rotation. However, predicting the rotational fate of a massive star is difficult, mainly because of the non-linearity of the phenomena involved and their strong dependence on uncertain prescriptions. Moreover, the very existence of the bi-stability jump in mass-loss rate remains to be substantiated by observations.


1976 ◽  
Vol 73 ◽  
pp. 35-61 ◽  
Author(s):  
E. P. J. Van Den Heuvel

The expected final evolution of massive close binaries (CB) in case B is reviewed. Primary stars with masses ≳ 12–15 M⊙ are, after loosing most of their envelope by mass exchange, expected to explode as supernovae, leaving behind a neutron star or a black hole.Conservative close binary evolution (i.e. without a major loss of mass and angular momentum from the system during the first stage of mass transfer) is expected to occur if the initial mass ratio q0 = M20/M10 is ≳ 0.3. In this case the primary star will be the less massive component when it explodes, and the system is almost never disrupted by the explosion. The explosion is followed by a long-lasting quiet stage (106–107 yr) when the system consists of a massive main-sequence star and an inactive compact companion. After the secondary has left the main-sequence and becomes a blue supergiant with a strong stellar wind, the system becomes a massive X-ray binary for a short while (2–5 × 104 yr).The numbers of Wolf-Rayet binaries and massive X-ray binaries observed within 3 kpc of the Sun are in reasonable agreement with the numbers expected on the basis of conservative CB evolution, which implies that several thousands of massive main-sequence stars with a quiet compact companion should exist in the Galaxy. About a dozen of these systems must be present among the stars visible to the naked eye. During the second stage of mass exchange, large loss of mass and angular momentum from the system is expected, leading to a rapid shrinking of the orbit. The supernova explosion of the secondary will in most cases disrupt the system. If it remains bound, the final system will consist of two compact stars and may resemble the binary pulsar PSR 1913 + 16.In systems with q0 ≲ 0.2–0.3 large mass loss from the system is expected during the first stage of mass exchange. The exploding primary will then be more massive than its unevolved companion and the first supernova explosion disrupts the system in most cases. In the rare cases that it remains bound, the system will have a large runaway velocity and, after a very long (108–109 yr) inactive stage evolves into a low-mass X-ray binary, possibly resembling Her X-1.


2011 ◽  
Vol 7 (S282) ◽  
pp. 417-424 ◽  
Author(s):  
Christopher A. Tout

AbstractVarious processes can lead to non-conservative evolution in binary stars. Under conservative mass transfer, both the total mass and the orbital angular momentum of the system are conserved. Thus, the transfer of angular momentum between the orbit and the spins of the stars can represent one such effect. Stars generally lose mass and angular momentum in a stellar wind so, even with no interaction, evolution is non-conservative. Indeed, a strong wind can actually drive mass transfer. During Roche lobe overflow itself, mass transfer becomes non-conservative when the companion cannot accrete all the material transferred by the donor. In some cases, material is simply temporarily stored in an accretion disc. In others, the companion may swell up and initiate common envelope evolution. Often the transferred material carries enough angular momentum to spin the companion up to break-up, at which point it could not accrete more. We investigate how this is alleviated by non-conservative evolution.


Sign in / Sign up

Export Citation Format

Share Document