scholarly journals Origin of Binary Systems

1992 ◽  
Vol 151 ◽  
pp. 9-19
Author(s):  
Peter Bodenheimer

Recent observational studies of the properties of binary systems among young stars indicate that the majority of binaries are formed very early in the history of a star, perhaps during the protostellar collapse. Major observational facts to be explained include the overall binary frequency, the non-negligible occurrence of multiple systems, and the distributions of period, eccentricity, and mass ratio among the individual binaries. Theoretical calculations of the collapse of rotating protostars during the isothermal phase indicate instability to fragmentation into multiple systems. This process in general produces systems with periods greater than a few hundred years, although somewhat shorter periods are possible. Fragmentation during later, optically thick, phases of collapse tends to be suppressed by pressure effects. Therefore, major theoretical problems remain concerning the origin of close binaries. Fission of rapidly rotating stars, tidal capture, and three-body capture have been shown to be improbable mechanisms for formation of close binaries. Mechanisms currently under study include gravitational instabilities in disks, orbital interactions and disk-induced captures in fragmented multiple systems, hierarchical fragmentation, and orbital decay of long-period systems. Single stars, on the other hand, could result by escape from multiple systems or by the collapse of clouds of low angular momentum, coupled with angular momentum transport after disk formation.

1976 ◽  
Vol 71 ◽  
pp. 475-475
Author(s):  
M. Rodonò

About 50% of the flare events observed on red dwarfs are at least double-peaked. As the majority of flare stars are members of double or multiple systems, the possibility that time-overlapping flares originate quasi-simultaneously on the individual components is discussed.Assuming a poissonian occurrence of flares in both components, the expected probability of observing double-peaked flares is lower than 1% for the most active binary systems.However, from photometric observations of the double flare star EQ Peg (BD +19°5116 AB) carried out by the author with an area scanner (the components' angular separation is 3.7″) about 20% of the observed flares have been found to be double-peaked flares resulting from separate flares, one in each component. A direct flare triggering of the following flare by the preceding one can be ruled out since the light travel-time between the two components is 3.5 h, while the observed time delay between the flare peaks is about 10 min. Moreover, the proximity effect does not seem to play an important triggering role.It is concluded that, although the analogy with solar ‘sympathetic’ flares is not always applicable, it is the most promising framework within which the majority of double-peaked flare events on red dwarfs must be interpreted.


1977 ◽  
Vol 33 ◽  
pp. 199-206
Author(s):  
S. J. Aarseth

AbstractThis review is mainly devoted to a discussion of binary formation and evolution in stellar systems, as described by N-body techniques. The simplest formation mechanisms consist of ejection from bound triple systems and capture arising from hyperbolic three-body encounters. However, the large number of astrophysically close binaries cannot be accounted for in this way unless most stars are formed in compact groups. Numerical calculations show that the evolution of clusters containing several hundred members is invariably dominated by one central binary which absorbs a large fraction of the total energy. It is suggested that a visual binary in the core of the Hyades cluster may have been associated with this process.


1970 ◽  
Vol 4 ◽  
pp. 147-156
Author(s):  
Jeremiah P. Ostriker

AbstractBrief reviews of the classical ‘angular momentum problem’ and the statistics of upper-main-sequence binaries are presented as background for the suggestion that the close, early-type, binaries are produced by fission of rapidly rotating protostars.Next, theoretical sequences of contracting, rotating stars are described. Recent work demonstrates that the zero-viscosity, polytropic sequences, have essentially the same properties as the McLaurin sequence. Thus, fission is possible for centrally condensed stars. Observations of close early-type binaries are compared with theoretical predictions for the minimum angular momentum in binary systems of given total mass; the agreement is excellent.Finally, the existing theoretical objections to the fission hypothesis for the origin of binary stars are reviewed, and it is concluded that, although fission remains unproven, there are now no strong theoretical arguments against the process, and there is considerable observational support for its existence.


1980 ◽  
Vol 88 ◽  
pp. 115-121
Author(s):  
D. Vanbeveren ◽  
C. De Loore

It becomes more and more evident that for close binary evolution during Roche lobe overflow as well mass transfer as mass loss occurs. When a mass element ΔM is expelled from the primary during this phase, a fraction β is transferred to the secondary; the remaining part leaves the system. Moreover, angular momentum leaves the system, and also this fraction has to be specified; this fraction is related to a parameter α (Vanbeveren et al., 1979). For the computation of the evolution of massive close binaries also mass loss due to stellar wind of both components, prior to the Roche lobe overflow has to be taken into account. The mass loss rate Ṁ due to radiation driven stellar winds can be expressed as


2003 ◽  
Vol 208 ◽  
pp. 459-460
Author(s):  
Tatsuhiro Uenishi ◽  
Ken'ichi Nomoto ◽  
Izumi Hachisu

Type Ia supernovae are very good, but not perfect, standard candles, because their observed brightness shows a little diversity. The origin of this dibersity needs to be understood for the application to cosmology.In close binary systems, a white dwarf must be rotating faster and faster as it gains angular momentum from the accretion disk. Its rapid rotation affects its final mass and strucure just before a supernova expolosion. Brightness of supernovae can be changed if mass of their progenitors have some diversity.


1976 ◽  
Vol 73 ◽  
pp. 35-61 ◽  
Author(s):  
E. P. J. Van Den Heuvel

The expected final evolution of massive close binaries (CB) in case B is reviewed. Primary stars with masses ≳ 12–15 M⊙ are, after loosing most of their envelope by mass exchange, expected to explode as supernovae, leaving behind a neutron star or a black hole.Conservative close binary evolution (i.e. without a major loss of mass and angular momentum from the system during the first stage of mass transfer) is expected to occur if the initial mass ratio q0 = M20/M10 is ≳ 0.3. In this case the primary star will be the less massive component when it explodes, and the system is almost never disrupted by the explosion. The explosion is followed by a long-lasting quiet stage (106–107 yr) when the system consists of a massive main-sequence star and an inactive compact companion. After the secondary has left the main-sequence and becomes a blue supergiant with a strong stellar wind, the system becomes a massive X-ray binary for a short while (2–5 × 104 yr).The numbers of Wolf-Rayet binaries and massive X-ray binaries observed within 3 kpc of the Sun are in reasonable agreement with the numbers expected on the basis of conservative CB evolution, which implies that several thousands of massive main-sequence stars with a quiet compact companion should exist in the Galaxy. About a dozen of these systems must be present among the stars visible to the naked eye. During the second stage of mass exchange, large loss of mass and angular momentum from the system is expected, leading to a rapid shrinking of the orbit. The supernova explosion of the secondary will in most cases disrupt the system. If it remains bound, the final system will consist of two compact stars and may resemble the binary pulsar PSR 1913 + 16.In systems with q0 ≲ 0.2–0.3 large mass loss from the system is expected during the first stage of mass exchange. The exploding primary will then be more massive than its unevolved companion and the first supernova explosion disrupts the system in most cases. In the rare cases that it remains bound, the system will have a large runaway velocity and, after a very long (108–109 yr) inactive stage evolves into a low-mass X-ray binary, possibly resembling Her X-1.


1980 ◽  
Vol 5 ◽  
pp. 27-44 ◽  
Author(s):  
B. Paczynski

A general scheme of evolution of close binaries is outlined. Many types of observed systems are classified according to their evolutionary status. Present theory can account reasonably well for the mass transfer between the two components. There is no satisfactory theory of mass and angular momentum loss from binary (as well as single) stars. Most close binaries sooner or later should develop extended common envelopes. A loss of a common envelope may remove a large fraction of mass and most of angular momentum from a binary, and leave as a remnant a very short period and highly evolved system. Binary nuclei of planetary nebulae, cataclysmic variables and some X-ray binaries are produced this way.I shall present here a picture of the evolution of close binary systems (CBS) as it is understood now. This is not intended to be a review, and no attempt has been made to make the list of references complete. Usually I shall refer the first paper on a given subject and/or one of the recent ones, where a large number of other references can be found. There are many reviews and proceedings of various symposia that deal with close binaries. Here are some: Annual Review of Astronomy and Astrophysics (9, 183,14, 119,15, 127,16, 171, 241), IAU Symposia No. 73, 83, 88, IAU Colloquia No. 42, 46, 53. I shall try to emphasize what is known and what is not known, and how various observed systems fit into the theoretical evolutionary scheme. Because of my background I shall give more references to theoretical papers. Nevertheless, I am convinced that it was the theory of close binaries that was guided in its development by the observations, not other way around. In fact the theory predicted very few new phenomena and very few new types of binaries. But it managed to account, at least qualitatively, for the major evolutionary processes, and made it possible to arrange the observed systems into the evolutionary sequences.


2010 ◽  
Vol 6 (S272) ◽  
pp. 531-532 ◽  
Author(s):  
Selma E. de Mink ◽  
Norbert Langer ◽  
Robert G. Izzard

AbstractRapidly rotating stars are readily produced in binary systems. An accreting star in a binary system can be spun up by mass accretion and quickly approach the break-up limit. Mergers between two stars in a binary are expected to result in massive, fast rotating stars. These rapid rotators may appear as Be or Oe stars or at low metallicity they may be progenitors of long gamma-ray bursts.Given the high frequency of massive stars in close binaries it seems likely that a large fraction of rapidly rotating stars result from binary interaction. It is not straightforward to distinguish a a fast rotator that was born as a rapidly rotating single star from a fast rotator that resulted from some kind of binary interaction. Rapidly rotating stars resulting from binary interaction will often appear to be single because the companion tends to be a low mass, low luminosity star in a wide orbit. Alternatively, they became single stars after a merger or disruption of the binary system during the supernova explosion of the primary.The absence of evidence for a companion does not guarantee that the system did not experience binary interaction in the past. If binary interaction is one of the main causes of high stellar rotation rates, the binary fraction is expected to be smaller among fast rotators. How this prediction depend on uncertainties in the physics of the binary interactions requires further investigation.


Author(s):  
Ryosuke Hirai ◽  
Ilya Mandel

Abstract We explore the effect of anisotropic wind driving on the properties of accretion onto black holes (BHs) in close binaries. We specifically focus on line-driven winds, which are common in high-mass X-ray binaries (HMXBs). In close binary systems, the tidal force from the companion star can modify the wind structure in two different ways. One is the reduction of wind terminal velocity due to the weaker effective surface gravity. The other is the reduction in mass flux due to gravity darkening (GD). We incorporate these effects into the so-called CAK theory in a simple way and investigate the wind flow around the accretor on the orbital scale. We find that a focused accretion stream is naturally formed when the Roche lobe filling factor is ${\gtrsim}0.8$ –0.9, analogous to that of wind Roche lobe overflow, but only when the velocity reduction is taken into account. The formation of a stream is necessary to bring in sufficient angular momentum to form an accretion disc around the BH. GD effects reduce the amount of accreted angular momentum, but not enough to prevent the formation of a disc. Based on these results, we expect there to be a discrete step in the observability of HMXBs depending on whether the donor Roche lobe filling factor is below or above ${\sim}$ 0.8–0.9.


2020 ◽  
Vol 499 (3) ◽  
pp. 4097-4113 ◽  
Author(s):  
Yossef Zenati ◽  
Daniel M Siegel ◽  
Brian D Metzger ◽  
Hagai B Perets

ABSTRACT The core collapse of massive, rapidly-rotating stars are thought to be the progenitors of long-duration gamma-ray bursts (GRB) and their associated hyperenergetic supernovae (SNe). At early times after the collapse, relatively low angular momentum material from the infalling stellar envelope will circularize into an accretion disc located just outside the black hole horizon, resulting in high accretion rates necessary to power a GRB jet. Temperatures in the disc mid-plane at these small radii are sufficiently high to dissociate nuclei, while outflows from the disc can be neutron-rich and may synthesize r-process nuclei. However, at later times, and for high progenitor angular momentum, the outer layers of the stellar envelope can circularize at larger radii ≳ 107 cm, where nuclear reactions can take place in the disc mid-plane (e.g. 4He + 16O → 20Ne + γ). Here we explore the effects of nuclear burning on collapsar accretion discs and their outflows by means of hydrodynamical α-viscosity torus simulations coupled to a 19-isotope nuclear reaction network, which are designed to mimic the late infall epochs in collapsar evolution when the viscous time of the torus has become comparable to the envelope fall-back time. Our results address several key questions, such as the conditions for quiescent burning and accretion versus detonation and the generation of 56Ni in disc outflows, which we show could contribute significantly to powering GRB SNe. Being located in the slowest, innermost layers of the ejecta, the latter could provide the radioactive heating source necessary to make the spectral signatures of r-process elements visible in late-time GRB-SNe spectra.


Sign in / Sign up

Export Citation Format

Share Document