scholarly journals The Role of Eruption in Solar Flares

1989 ◽  
Vol 104 (1) ◽  
pp. 387-397
Author(s):  
Peter A. Sturrock

AbstractThis article focuses on two problems involved in the development of models of solar flares. The first concerns the mechanism responsible for eruptions, such as erupting filaments or coronal mass ejections, that are sometimes involved in the flare process. The concept of ‘loss of equilibrium’ is considered and it is argued that the concept typically arises in thought-experiments that do not represent acceptable physical behavior of the solar atmosphere. It is proposed instead that such eruptions are probably caused by an instability of a plasma configuration. The instability may be purely MHD, or it may combine both MHD and resistive processes. The second problem concerns the mechanism of energy release of the impulsive (or gradual) phase. It is proposed that this phase of flares may be due to current interruption, as was originally proposed by Alfvén and Carlqvist. However, in order for this process to be viable, it seems necessary to change one's ideas about the heating and structure of the corona in ways that are outlined briefly.

2000 ◽  
Vol 195 ◽  
pp. 15-25
Author(s):  
R. P. Lin

The Sun accelerates ions up to tens of GeV and electrons up to 100s of MeV in solar flares and coronal mass ejections. The energy in the accelerated tens-of-keV electrons and possibly ~1 MeV ions constitutes a significant fraction of the total energy released in a flare, implying that the particle acceleration and flare energy release mechanisms are intimately related. The total rate of energy release in transients from flares down to microflares/nanoflares may be significant for heating the active solar corona.Shock waves driven by fast CMEs appear to accelerate the high-energy particles in large solar energetic particle events detected at 1 AU. Smaller SEP events are dominated by ~1 to tens-of-keV electrons, with low fluxes of up to a few MeV/nucleon ions, typically enriched in 3He. The acceleration in gamma-ray flares appears to resemble that in these small electron-3He SEP events.


A summary is given of some recent observational data on solar flares. Particularly we discuss the flare build-up process and the time scales involved. We suggest as a possible magnetic field configuration a multiply kinked or supertwisted flux tube. The role of plasma turbulence and the Fermi mechanism in particle acceleration is discussed.


1977 ◽  
Vol 36 ◽  
pp. 143-180 ◽  
Author(s):  
J.O. Stenflo

It is well-known that solar activity is basically caused by the Interaction of magnetic fields with convection and solar rotation, resulting in a great variety of dynamic phenomena, like flares, surges, sunspots, prominences, etc. Many conferences have been devoted to solar activity, including the role of magnetic fields. Similar attention has not been paid to the role of magnetic fields for the overall dynamics and energy balance of the solar atmosphere, related to the general problem of chromospheric and coronal heating. To penetrate this problem we have to focus our attention more on the physical conditions in the ‘quiet’ regions than on the conspicuous phenomena in active regions.


1998 ◽  
Vol 499 (1) ◽  
pp. 496-503 ◽  
Author(s):  
Richard Wolfson ◽  
Siddharth Saran

2020 ◽  
Vol 29 (1) ◽  
pp. 81-88
Author(s):  
Virendra Kumar Verma ◽  
Nishant Mittal ◽  
Ramesh Chandra

AbstractWe present an investigation of halo coronal mass ejections (HCMEs) kinematics and other facts about the HCMEs. The study of HCMEs is very important because HCMEs are regarded as the main causes of heliospheric and geomagnetic disturbances. In this study, we have investigated 313 HCMEs observed during 1996-2012 by LASCO, coronal holes, and solar flares. We find that HCMEs are of two types: accelerated HCMEs and decelerated HCMEs. The mean space speed of HCMEs is 1283 km/s while the mean speed of decelerated HCMEs and accelerated HCMEs is 1349 km/s and 1174 km/s, respectively. The investigation shows that 1 (0.3%) HCME was associated with class A SXR, 14 (4.7%) HCMEs were associated with class B SXR-flares, 87 (29.4%) HCMEs were associated with class C SXR-flares, 125 (42.2%) HCMEs were associated with class M SXR-flares and 69 (23.3%) HCMEs were associated with class X SXR-flares. The speed of HCMEs increases with the importance of solar SXR-flares. The various results obtained in the present analysis are discussed in the light of the existing scenario of heliospheric physics.


2020 ◽  
Vol 897 (1) ◽  
pp. 64 ◽  
Author(s):  
Jing Ye ◽  
Qiangwei Cai ◽  
Chengcai Shen ◽  
John C. Raymond ◽  
Jun Lin ◽  
...  
Keyword(s):  

1988 ◽  
Vol 148 (1) ◽  
pp. 75-84 ◽  
Author(s):  
Ranjna Bakaya ◽  
R. R. Rausaria ◽  
P. N. Khosa
Keyword(s):  

2000 ◽  
Vol 195 ◽  
pp. 123-132 ◽  
Author(s):  
R. Ramaty ◽  
N. Mandzhavidze

Gamma-ray emission is the most direct diagnostic of energetic ions and relativistic electrons in solar flares. Analysis of solar flare gamma-ray data has shown: (i) ion acceleration is a major consequence of flare energy release, as the total flare energy in accelerated particles appears to be equipartitioned between ≳ 1 MeV/nucleon ions and ≳ 20 keV electrons, and amounts to an important fraction of the total energy release; (ii) there are flares for which over 50% of the energy is in a particles and heavier ions; (iii) in both impulsive and gradual flares, the particles that interact at the Sun and produce gamma rays are essentially always accelerated by the same mechanism that operates in impulsive flares, probably stochastic acceleration through gyroresonant wave particle interaction; and (iv) gamma-ray spectroscopy can provide new information on solar abundances, for example the site of the FIP-bias onset and the photospheric 3He abundance. We propose a new technique for the investigation of mass motion and mixing in the solar atmosphere: the observations of gamma-ray lines from long-term radioactivity produced by flare accelerated particles.


Sign in / Sign up

Export Citation Format

Share Document