scholarly journals Millisecond Pulsar Timing in Effelsberg

1996 ◽  
Vol 160 ◽  
pp. 95-96 ◽  
Author(s):  
M. Kramer ◽  
O. Doroshenko ◽  
A. Jessner ◽  
R. Wielebinski ◽  
A. Wolszczan ◽  
...  

Millisecond pulsar as clocks are excellent tools for studying a variety of phenomena in physics and astrophysics (e.g. Foster & Backer 1990). We have been observing millisecond pulsars with the 100–m Effelsberg radiotelescope since April 1994. Initially, the goal of this program was to help continuing the timing of Arecibo pulsars during the upgrade–related shutdown period of the 305–m radiotelescope. Gradually, the program has evolved to time and study the emission physics of all short period pulsars detectable from Effelsberg. In particular, polarization measurements are used to make inferences about the emission physics of millisecond pulsars (cf. Xilouris & Kramer, this proceeding). At present, the programme involves approximately monthly observations of a set of 22 sources.

2004 ◽  
Vol 218 ◽  
pp. 439-440
Author(s):  
Tinggao Yang ◽  
Guangren Ni

Long term timing of multiple millisecond pulsars can contribute to the study of an ensemble pulsar time scale PTens. A wavelet decomposition algorithm (WDA) was applied to define a PTens using the available millisecond pulsar timing datA. The PTens obtained from WDA is more stable than those resulting from other algorithms. The Chinese 50 m radio telescope is specially designed for PTens study and detection of gravitational wave background via millisecond pulsars timing observations. A scheme for multiple millisecond pulsar timing and ensemble pulsar time study is discussed in some detail.


1995 ◽  
Vol 166 ◽  
pp. 163-171 ◽  
Author(s):  
V. M. Kaspi

We present the technique of long-term, high-precision timing of millisecond pulsars as applied to precision astrometry. We provide a tutorial on pulsars and pulsar timing, as well as up-to-date results of long-term timing observations of two millisecond pulsars, PSRs B1855+09 and B1937+21. We consider the feasibility of tying the extragalactic and optical reference frames to that defined by solar system objects, and we conclude that precision astrometry from millisecond pulsar timing has a bright future.


1996 ◽  
Vol 160 ◽  
pp. 249-251
Author(s):  
José Navarro ◽  
R. N. Manchester

To date there have been few polarimetric observations of millisecond pulsars, mainly due to the instrumental challenge of simultaneous high time resolution and large bandwidth. Such observations provide our most direct clues to the structure of the magnetic fields around pulsars, and are especially important in the case of millisecond pulsars, where radio emission necessarily originates very close to the neutron star surface.We have observed the bright millisecond pulsar J0437–4715 at the Parkes Radiotelescope with the Caltech Fast Pulsar Timing Machine, at several radio frequencies and in full polarimetric mode. Our analyses show significant deviations from the standard dipole field geometry.


1989 ◽  
Vol 8 ◽  
pp. 161-165
Author(s):  
J.H. Krolik

AbstractMillisecond pulsars are intrinsically interesting because they illustrate some of the most extreme physical conditions to be found anywhere in the Universe, and because their evolution exhibits several stages of great drama. It had been widely believed for several years that spin-up of an old neutron star by accretion from a close stellar companion explained their fast rotation, but the absence of companions in several cases cast doubt on that picture. This spring a millisecond pulsar in a close binary was discovered in which the companion appears to be evaporating, thus reconciling the existence of lone millisecond pulsars with the standard picture. Ongoing observations of this new system, and complementary calculations, promise to answer many of the questions remaining about this dramatic phase in stellar evolution.


2019 ◽  
Vol 627 ◽  
pp. A141 ◽  
Author(s):  
N. A. Webb ◽  
D. Leahy ◽  
S. Guillot ◽  
N. Baillot d’Etivaux ◽  
D. Barret ◽  
...  

Context. Pulsating thermal X-ray emission from millisecond pulsars can be used to obtain constraints on the neutron star equation of state, but to date only five such sources have been identified. Of these five millisecond pulsars, only two have well-constrained neutron star masses, which improve the determination of the radius via modelling of the X-ray waveform. Aims. We aim to find other millisecond pulsars that already have well-constrained mass and distance measurements that show pulsed thermal X-ray emission in order to obtain tight constraints on the neutron star equation of state. Methods. The millisecond pulsar PSR J1909–3744 has an accurately determined mass, M = 1.54 ± 0.03 M⊙ (1σ error) and distance, D = 1.07 ± 0.04 kpc. We analysed XMM-Newton data of this 2.95 ms pulsar to identify the nature of the X-ray emission. Results. We show that the X-ray emission from PSR J1909–3744 appears to be dominated by thermal emission from the polar cap. Only a single component model is required to fit the data. The black-body temperature of this emission is $ {kT}=0.26^{0.03}_{0.02} $ keV and we find a 0.2–10 keV un-absorbed flux of 1.1 × 10−14 erg cm−2 s−1 or an un-absorbed luminosity of 1.5 × 1030 erg s−1. Conclusion. Thanks to the previously determined mass and distance constraints of the neutron star PSR J1909–3744, and its predominantly thermal emission, deep observations of this object with future X-ray facilities should provide useful constraints on the neutron star equation of state.


1992 ◽  
Vol 128 ◽  
pp. 213-213
Author(s):  
A. D. Kuz'min ◽  
Yu. I. Alekseev ◽  
K. A. Lapaev ◽  
B. Ya. Losovsky ◽  
A. A. Salnikov

AbstractThe study of millisecond pulsars is of great astrophysical interest. One may expect that the rotation effect on the structure of the magnetosphere should be very significant. In view of the short duration of the pulses they are very suitable for investigations of the interstellar medium; at least they hold the promise for the pulsar time scale.Millisecond pulsars were discovered and have been studied on the basis of their radio-emission at decimeter wavelengths. At longer wavelengths scattering of the radio emission in the interstellar medium is the principal limitation of millisecond pulsar observations.


2000 ◽  
Vol 177 ◽  
pp. 63-64
Author(s):  
W. Lewandowski ◽  
M. Konacki ◽  
M. Redmerska ◽  
G. Feiler ◽  
A. Wolszczan

Accurate, long-term timing measurements of pulsars provide a powerful method to study a variety of astrophysical phenomena. For “normal”, slow pulsars, the dominant factors that limit the timing precision are the intrinsic timing noise and single pulse “jitter” (e.g. Cordes 1993). In fact, because the pulse jitter surpasses radiometer noise for sufficiently strong pulsars and no further improvement of the timing precision can be achieved by increasing the antenna gain, the timing of such sources can be very efficiently conducted with suitably equipped medium-size radiotelescopes.We have been timing slow pulsars with the 32-m TCfA radiotelescope in Toruń, Poland, since July 1996, using a dual-channel, circular polarization L-band receiving system at frequencies around 1.7 GHz, and a 2 × 64 × 3 MHz channel pulsar backend, the Penn State Pulsar Machine - 2 (PSPM-2; for more details, see Konacki et al. 1999). Our gradually expanding source list currently includes 88 pulsars timed once a week with a millisecond precision using the observatory’s UTC-calibrated H-maser clock. Data analysis is routinely performed with the TEMPO software package. With a particularly dense, weekly sampling and a ≤1 ms timing precision, the TCfA program has a sensitivity to detect previously overlooked short period, low orbital inclination binaries, as well as very low-mass, planetary companions. In addition, it will be very useful in identifying and monitoring pulsar timing glitches and other forms of the timing noise.


2016 ◽  
Vol 458 (3) ◽  
pp. 3341-3380 ◽  
Author(s):  
G. Desvignes ◽  
R. N. Caballero ◽  
L. Lentati ◽  
J. P. W. Verbiest ◽  
D. J. Champion ◽  
...  

2000 ◽  
Vol 177 ◽  
pp. 27-30 ◽  
Author(s):  
Nichi D’Amico

AbstractSince the discovery of the original millisecond pulsar, no pulsars with a shorter spin period (P<1.56 ms) were found. However, according to the most popular equations of state, the theoretical limiting spin period of a neutron star can be much shorter. On the other hand, most of the large scale searches for millisecond pulsars carried out so far were strongly biased against the detection of ultrashort periodicities. In this paper we describe a new large scale pulsar survey with a minimum detectable period much shorter than previous searches.


2017 ◽  
Vol 4 (5) ◽  
pp. 707-717 ◽  
Author(s):  
George Hobbs ◽  
Shi Dai

Abstract A pulsar timing array (PTA) refers to a program of regular, high-precision timing observations of a widely distributed array of millisecond pulsars. Here we review the status of the three primary PTA projects and the joint International Pulsar Timing Array project. We discuss current results related to ultra-low-frequency gravitational wave searches and highlight opportunities for the near future.


Sign in / Sign up

Export Citation Format

Share Document