scholarly journals Large Scale Patterns on the Solar Surface Indicated by Microwave Observations

1991 ◽  
Vol 130 ◽  
pp. 282-284
Author(s):  
B. Vršnak ◽  
S. Pohjolainen ◽  
H. Teräsranta ◽  
S. Urpo ◽  
R. Brajša ◽  
...  

AbstractA large set of observations of the Sun at 37 GHz is analysed. An association of 99% is found between the regions of brightness temperature depression and the magnetic field inversion lines. Observations indicate a possible existence of “giant cells” with duration of 1-2 years and a longitudinal extension up to 90°.

1991 ◽  
Vol 130 ◽  
pp. 187-189
Author(s):  
V.N. Krivodubskij ◽  
A.E. Dudorov ◽  
A.A. Ruzmaikin ◽  
T.V. Ruzmaikina

Analysis of the fine structure of the solar oscillations has enabled us to determine the internal rotation of the Sun and to estimate the magnitude of the large-scale magnetic field inside the Sun. According to the data of Duvall et al. (1984), the core of the Sun rotates about twice as fast as the solar surface. Recently Dziembowski et al. (1989) have showed that there is a sharp radial gradient in the Sun’s rotation at the base of the convection zone, near the boundary with the radiative interior. It seems to us that the sharp radial gradients of the angular velocity near the core of the Sun and at the base of the convection zone, acting on the relict poloidal magnetic field Br, must excite an intense toroidal field Bф, that can compensate for the loss of the magnetic field due to magnetic buoyancy.


2004 ◽  
Vol 11 (4) ◽  
pp. 441-445 ◽  
Author(s):  
L. F. Burlaga

Abstract. During 2002, the Voyager 1 spacecraft was in the heliosphere between 83.4 and 85.9AU (1AU is the mean distance from the Sun to Earth) at 34° N heliographic latitude. The magnetic field strength profile observed in this region had a multifractal structure in the range of scales from 2 to 16 days. The multifractal spectrum observed near 85AU is similar to that observed near 40AU, indicating relatively little evolution of the multifractal structure of the magnetic field with increasing distance in the distant heliosphere in the epoch near solar maximum.


1990 ◽  
Vol 138 ◽  
pp. 391-394
Author(s):  
A.E. Dudorov ◽  
V.N. Krivodubskij ◽  
A.A. Ruzmaikin ◽  
T.V. Ruzmaikina

The behaviour of the magnetic field during the formation and evolution of the Sun is investigated. It is shown that an internal poloidal magnetic field of the order of 104 − 105 G near the core of the Sun may be compatible with differential rotation and with torsional waves, travelling along the magnetic field lines (Dudorov et al., 1989).


2021 ◽  
Vol 647 ◽  
pp. A178
Author(s):  
T. Roudier ◽  
M. Švanda ◽  
J. M. Malherbe ◽  
J. Ballot ◽  
D. Korda ◽  
...  

Downflows on the solar surface are suspected to play a major role in the dynamics of the convection zone, at least in its outer part. We investigate the existence of the long-lasting downflows whose effects influence the interior of the Sun but also the outer layers. We study the sets of Dopplergrams and magnetograms observed with Solar Dynamics Observatory and Hinode spacecrafts and an magnetohydrodynamic (MHD) simulation. All of the aligned sequences, which were corrected from the satellite motions and tracked with the differential rotation, were used to detect the long-lasting downflows in the quiet-Sun at the disc centre. To learn about the structure of the flows below the solar surface, the time-distance local helioseismology was used. The inspection of the 3D data cube (x, y, t) of the 24 h Doppler sequence allowed us to detect 13 persistent downflows. Their lifetimes lie in the range between 3.5 and 20 h with a sizes between 2″ and 3″ and speeds between −0.25 and −0.72 km s−1. These persistent downflows are always filled with the magnetic field with an amplitude of up to 600 Gauss. The helioseismic inversion allows us to describe the persistent downflows and compare them to the other (non-persistent) downflows in the field of view. The persistent downflows seem to penetrate much deeper and, in the case of a well-formed vortex, the vorticity keeps its integrity to the depth of about 5 Mm. In the MHD simulation, only sub-arcsecond downflows are detected with no evidence of a vortex comparable in size to observations at the surface of the Sun. The long temporal sequences from the space-borne allows us to show the existence of long-persistent downflows together with the magnetic field. They penetrate inside the Sun but are also connected with the anchoring of coronal loops in the photosphere, indicating a link between downflows and the coronal activity. A links suggests that EUV cyclones over the quiet Sun could be an effective way to heat the corona.


Author(s):  
Robert Cameron

The solar dynamo is the action of flows inside the Sun to maintain its magnetic field against Ohmic decay. On small scales the magnetic field is seen at the solar surface as a ubiquitous “salt-and-pepper” disorganized field that may be generated directly by the turbulent convection. On large scales, the magnetic field is remarkably organized, with an 11-year activity cycle. During each cycle the field emerging in each hemisphere has a specific East–West alignment (known as Hale’s law) that alternates from cycle to cycle, and a statistical tendency for a North-South alignment (Joy’s law). The polar fields reverse sign during the period of maximum activity of each cycle. The relevant flows for the large-scale dynamo are those of convection, the bulk rotation of the Sun, and motions driven by magnetic fields, as well as flows produced by the interaction of these. Particularly important are the Sun’s large-scale differential rotation (for example, the equator rotates faster than the poles), and small-scale helical motions resulting from the Coriolis force acting on convective motions or on the motions associated with buoyantly rising magnetic flux. These two types of motions result in a magnetic cycle. In one phase of the cycle, differential rotation winds up a poloidal magnetic field to produce a toroidal field. Subsequently, helical motions are thought to bend the toroidal field to create new poloidal magnetic flux that reverses and replaces the poloidal field that was present at the start of the cycle. It is now clear that both small- and large-scale dynamo action are in principle possible, and the challenge is to understand which combination of flows and driving mechanisms are responsible for the time-dependent magnetic fields seen on the Sun.


2021 ◽  
Author(s):  
Prantika Bhowmik ◽  
Anthony Yeates

<p>During Solar Minimum, the Sun is perceived to be quite inactive with barely any spots emerging on the solar surface. Consequently, we observe a drop in the number of highly energetic events such as solar flares and coronal mass ejections (CMEs), which are often associated with active regions on the photosphere. However, our magnetofrictional simulations during the minimum period suggest that the solar corona could still be significantly dynamic while evolving in response to the large-scale shearing velocities on the solar surface. The non-potential evolution of the corona leads to the accumulation of magnetic free energy and helicity, which is periodically lost through eruptive events. Our study shows that these events can be categorised into two distinct classes. One set of events are caused due to full-scale eruption of low-lying coronal flux ropes and could be associated with occasional filament erupting CMEs observed during Solar Minimum. The other set of events are not driven by destabilisation of low-lying structures but rather by eruption from overlying sheared arcades. These could be linked with streamer blowouts or stealth CMEs. The two classes differ considerably in the amount of magnetic flux and helicity shed through the outer coronal boundary. We additionally investigate how other measurables such as current, open magnetic flux, free energy, coronal holes area, and the horizontal component of the magnetic field on the outer model boundary vary during the two classes of event. This study demonstrates and emphasises the importance and necessity of understanding the dynamics of the coronal magnetic field during Solar Minimum.</p>


1985 ◽  
Vol 38 (6) ◽  
pp. 999 ◽  
Author(s):  
CR DeVore ◽  
NR Sheeley Jr ◽  
JP Boris ◽  
TR Young Jr ◽  
KL Harvey

We have solved numerically a transport equation which describes the evolution of the large-scale magnetic field of the Sun. Data derived from solar magnetic observations are used to initialize the computations and to account for the emergence of new magnetic flux during the sunspot cycle. Our objective is to assess the ability of the model to reproduce the observed evolution of the field patterns. We discuss recent results from simulations of individual active regions over a few solar rotations and of the magnetic field of the Sun over sunspot cycle 21.


1968 ◽  
Vol 35 ◽  
pp. 47-49 ◽  
Author(s):  
Jan Olof Stenflo

According to modern theories of the solar cycle, active regions on the Sun are caused by a magnetic disturbance penetrating the solar surface from below. Sunspots, filaments, flares and other conspicuous events in an active region seem to be only secondary phenomena, the basic feature being the magnetic field itself.


1996 ◽  
Vol 154 ◽  
pp. 169-172
Author(s):  
Mausumi Dikpati ◽  
Arnab Rai Choudhuri

AbstractWe assume the large-scale diffuse magnetic field of the Sun to originate from the poloidal component of a dynamo operating at the base of the convection zone, whereas the sunspots are due to the toroidal component. The evolution of the poloidal component is studied to model the poleward migration of the diffuse field seen on the solar surface and the polar reversal at the time of sunspot maxima (Dikpati and Choudhuri 1994, 1995).


Sign in / Sign up

Export Citation Format

Share Document