solar surface
Recently Published Documents


TOTAL DOCUMENTS

356
(FIVE YEARS 50)

H-INDEX

39
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Richard Müller ◽  
Uwe Pfeifroth

Abstract. Accurate solar surface irradiance data (SSI) is a prerequisite for efficient planning and operation of solar energy sys- tems. Respective data are also essential for climate monitoring and analysis. Satellite-based SSI has grown in importance over the last few decades. However, a retrieval method is needed to relate the measured radiances at the satellite to the solar surface irradiance. In a widespread classical approach, these radiances are used directly to derive the effective cloud albedo (CAL) as basis for the estimation of the solar surface irradiance. This approach has been already introduced and discussed in the early 1980s. Various approaches are briefly discussed and analyzed, including an overview of open questions and opportunities for improvement. Special emphasis is placed on the reflection of fundamental physical laws and atmospheric measurement tech- niques. In addition, atmospheric input data and key applications are briefly discussed. It is concluded that the well established observational-based CAL approach is still an excellent choice for the retrieval of the cloud transmission. The coupling with Look-Up-Table based clear sky models enables the estimation of solar surface irradiance with high accuracy and homogeneity. This could explain why, despite its age, the direct CAL approach is still used by key players in energy meteorology and the climate community. For the clear sky input data it is recommended to use ECMWF forecast and reanalysis data.


2021 ◽  
Author(s):  
Faiza Azam ◽  
Jethro Betcke ◽  
Marion Schroedter-Homscheidt ◽  
Mireille Lefevre ◽  
Yves-Marie Saint-Drenan ◽  
...  

<p>The Copernicus Atmospheric Monitoring Service (CAMS) offers Solar radiation services (CRS) providing information on surface solar irradiance (SSI). The service is currently derived from Meteosat Second Generation (MSG) and the service evolution includes its extension to other parts of the globe. CRS provides clear and all sky time series combining satellite data products with numerical model output from CAMS on aerosols, water vapour and ozone. These products are available from 2004 until yesterday. A regular quality control of input parameters, quarterly benchmarking against ground measurements and automatic consistency checks ensure the service quality.</p> <p>Variability of solar surface irradiances in the 1-minute range is of interest especially for solar energy applications. The variability classes can be defined based on ground as well as satellite-based measurements. This study will present the evaluation of the CAMS CRS based on the eight variability classes derived from ground observations of direct normal irradiation (DNI) (Schroedter-Homscheidt et al., 2018). Such an analysis will help assess the impact of recent improvements in the derivation of all sky irradiance under different cloudy conditions.</p> <p>References:</p> <p>Schroedter-Homscheidt, M., S. Jung, M. Kosmale, 2018: Classifying ground-measured 1 minute temporal variability within hourly intervals for direct normal irradiances. – Meteorol. Z. 27, 2, 160–179. DOI:10.1127/metz/2018/0875.</p>


Author(s):  
N. Gottschling ◽  
H. Schunker ◽  
A. C. Birch ◽  
R. Cameron ◽  
L. Gizon

Author(s):  
R. T. Ishikawa ◽  
M. Nakata ◽  
Y. Katsukawa ◽  
Y. Masada ◽  
T. L. Riethmüller

Solar Physics ◽  
2021 ◽  
Vol 296 (12) ◽  
Author(s):  
Peter R. Young ◽  
Nicholeen M. Viall ◽  
Michael S. Kirk ◽  
Emily I. Mason ◽  
Lakshmi Pradeep Chitta

AbstractThe Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) returns high-resolution images of the solar atmosphere in seven extreme ultraviolet (EUV) wavelength channels. The images are processed on the ground to remove intensity spikes arising from energetic particles hitting the instrument, and the despiked images are provided to the community. In this article, a three-hour series of images from the 171 Å channel obtained on 28 February 2017 was studied to investigate how often the despiking algorithm gave false positives caused by compact brightenings in the solar atmosphere. The latter were identified through spikes appearing in the same detector pixel for three consecutive frames. 1096 examples were found from the 900 image frames. These “three-spikes” were assigned to 126 dynamic solar features, and it is estimated that the three-spike method identifies 19% of the total number of features affected by despiking. For any ten-minute sequence of AIA 171 Å images there are around 37 solar features that have their intensity modified by despiking. The features are found in active regions, quiet Sun, and coronal holes and, in relation to solar surface area, there is a greater proportion within coronal holes. In 96% of the cases, the despiked structure is a compact brightening with a size of two arcsec or less, and the remaining 4% have narrow, elongated structures. By applying an EUV burst detection algorithm, we found that 96% of the events could be classified as EUV bursts. None of the spike events are rendered invisible by the AIA processing pipeline, but the total intensity over an event’s lifetime can be reduced by up to 67%. Users are recommended to always restore the original intensities in AIA data when studying short-lived or rapidly evolving features that exhibit fine-scale structure.


2021 ◽  
Vol 21 (11) ◽  
pp. 284
Author(s):  
Ming-Hui Zhang ◽  
Yin Zhang ◽  
Yi-Hua Yan ◽  
Wei Wang ◽  
Lin-Jie Chen ◽  
...  

Abstract The solar radio signal that can be received by the ground-based telescopes covers a wide frequency range, allowing us to monitor the complex physical processes occurred from the solar surface to the vast interplanetary space. MingantU SpEctral Radioheliograph (MUSER), as the latest generation of solar dedicated radio spectral-imaging instrument in the centimeter-decimeter wavelengths, has accumulated a large number of observational data since its commissioning observation in 2014. This paper presents the main observational results identified by MUSER from 2014 to 2019, including the quiet Sun and 94 solar radio burst events. We find that there are 81 events accompanied with Geostationary Operational Environmental Satellites (GOES) soft X-ray (SXR) flares, among which the smallest flare class is B1.0. There are 13 events without accompanying any recorded flares, among which the smallest SXR intensity during the radio burst period is equivalent to level-A. The main characteristics of all radio burst events are presented, which shows the powerful ability of MUSER to capture the valuable information of the solar non-thermal processes and the importance for space weather. This work also provides a database for further in-depth research.


2021 ◽  
Vol 257 (2) ◽  
pp. 33
Author(s):  
Kashvi Mundra ◽  
V. Aparna ◽  
Petrus Martens

Abstract There have been a few previous studies claiming that the effects of geomagnetic storms strongly depend on the orientation of the magnetic cloud portion of coronal mass ejections (CMEs). Aparna & Martens, using halo-CME data from 2007 to 2017, showed that the magnetic field orientation of filaments at the location where CMEs originate on the Sun can be used to credibly predict the geoeffectiveness of the CMEs being studied. The purpose of this study is to extend their survey by analyzing the halo-CME data for 1996–2006. The correlation of filament axial direction on the solar surface and the corresponding Bz signatures at L1 are used to form a more extensive analysis for the results previously presented by Aparna & Martens. This study utilizes Solar and Heliospheric Observatory Extreme-ultraviolet Imaging Telescope 195 Å, Michelson Doppler Imager magnetogram images, and Kanzelhöhe Solar Observatory and Big Bear Solar Observatory Hα images for each particular time period, along with ACE data for interplanetary magnetic field signatures. Utilizing all these, we have found that the trend in Aparna & Martens’ study of a high likelihood of correlation between the axial field direction on the solar surface and Bz orientation persists for the data between 1996 and 2006, for which we find a match percentage of 65%.


2021 ◽  
Vol 21 (10) ◽  
pp. 262
Author(s):  
Yan-Jie Zhang ◽  
Qing-Min Zhang ◽  
Jun Dai ◽  
Zhe Xu ◽  
Hai-Sheng Ji

Abstract In this paper, we carried out multiwavelength observations of three recurring jets on 2014 November 7. The jets originated from the same region at the edge of AR 12205 and propagated along the same coronal loop. The eruptions were generated by magnetic reconnection, which is evidenced by continuous magnetic cancellation at the jet base. The projected initial velocity of jet2 is ∼402 km s−1. The accelerations in the ascending and descending phases of jet2 are not consistent, the former is considerably larger than the value of g ⊙ at the solar surface, while the latter is lower than g ⊙. There are two possible candidates of extra forces acting on jet2 during its propagation. One is the downward gas pressure from jet1 when it falls back and meets with jet2. The other is the viscous drag from the surrounding plasma during the fast propagation of jet2. As a contrast, the accelerations of jet3 in the rising and falling phases are constant, implying that the propagation of jet3 is not significantly influenced by extra forces.


2021 ◽  
Vol 916 (2) ◽  
pp. 87
Author(s):  
Samarth G. Kashyap ◽  
Shravan M. Hanasoge

2021 ◽  
pp. 2463-2473
Author(s):  
Raaid Noffi Hassan ◽  
Huda Shaker Ali ◽  
Wafaa Hikmat Wadee

     Numerical simulations were carried out to evaluate the effects of different aberrations modes on the performance of optical system, when observing and imaging the solar surface. Karhunen-Loeve aberrations modes were simulated as a wave front error in the aperture function of the optical system. To identify and apply the appropriate rectification that removes or reduces various types of aberration, their attribute must be firstly determined and quantitatively described. Wave aberration function is well suitable for this purpose because it fully characterizes the progressive effect of the optical system on the wave front passing through the aperture. The Karhunen-Loeve polynomials for circular aperture were used to describe wave front deviations and to predict the initial state of adaptive optics corrections. The results showed that increasing the aberration modes causes an increase in the blurring of the observed image. Also, we conclude that the optical phase error is increased significantly when aperture’s radii are increased.


Sign in / Sign up

Export Citation Format

Share Document