scholarly journals Pole-On Cataclysmic Variables as Be Stars

1987 ◽  
Vol 92 ◽  
pp. 460-462
Author(s):  
R. F. Garrison

Cataclysmic-variable stars (CVs) are technically Be stars, since Balmer emission lines appear in their spectra. In general, CV spectra are so unusual that they are easily recognized. The main features are extremely broad, shallow hydrogen lines with broad, faint emission cores. The Balmer emission decrement is very slow, more like that of an H II region than that of a normal Be star. The Balmer decrement in cataclysmic variable stars has been discussed by Elitzur, et al.If a CV were viewed pole-on, the spectrum might be quite different. It could exhibit a smooth continuum or may even resemble a normal Be star, except for the Balmer decrement. In this case, there may be a bright cataclysmic variable lurking in the Be star class. A possible example is the star NS 274-67, an 03e star described by Conti et al. (1986), which has Balmer emission from H-beta to H-ep-silon, but no nebular emission at [0 II] or [0 III].

1982 ◽  
Vol 98 ◽  
pp. 53-56 ◽  
Author(s):  
L. Divan ◽  
J. Zorec ◽  
D. Briot

One of the greatest difficulties in interpreting the continuous spectrum of Be stars is to separate the effects of interstellar reddening from the effects due to the presence of the envelope. This difficulty has been avoided in the two types of correlations considered here. In the first one, parameters not affected by interstellar reddening are used (the Balmer jump and the Balmer decrement). In the second one, the parameters used can be affected by the interstellar extinction but comparisons are made only between values which correspond to the same (but variable) Be star, at different epochs, with different amounts of emission.


1982 ◽  
Vol 98 ◽  
pp. 167-170
Author(s):  
D. Baade

Spectroscopic (1970: ESO, 12 Å/mm, 6 spectra kindly put at my disposal by Prof. A. Van Hoof; 1976: ESO, 12 Å/mm; 1977: Calar Alto Observatory, 42 Å/mm; 1979: ESO, 12 Å/mm) and photometric (1976: ESO and Cerro Tololo, Hβ, uvby) observations of 28 CMa (B2-3 IV-Ve; 3.52 < mV < 4.18, irregular variations on the time scale of months or years reported; vrot = 80 km/s) revealed a very complex variability. All observed individual types of variations are known from at least a few other Be stars. In 28 CMa, however, for the first time a highly significant correlation between the various variations is established by a stable common period. The period is 1.365 days which seems to be the shortest stable period presently known of any Be star. There is no indication that the star's behaviour changed between 1970 and 1979. Only the equivalent widths of the emission lines increased noticeably.


1973 ◽  
Vol 49 ◽  
pp. 93-107
Author(s):  
Peter S. Conti

My intention here is to discuss the ‘high temperature’ portion of this symposium and call attention to those stars that are called Of. There are some similarities in spectral appearance to WR stars, e.g. emission lines. I should first like to define what I think are the essential differences among four groups of hot stars;O stars: Stars that have only absorption lines in the visible spectrum. Type O is distinguished from type B by the presence of He ii 4541 at MK dispersion. It may be that some (supergiants) O stars will have emission lines in the rocket UV region but this description will be primarily concerned with ground based observations.Of stars: These are O type stars that also have λλ 4634,40 N iii in emission above the continuum. In addition to normal O star absorption lines and N iii emission, they may also have other lines in emission. I will discuss this further below.Oe stars: These are O type stars that have emission in the hydrogen lines (or at least at Hα), but with no emission in N iii or in other lines. I personally think that this small class of objects is related to the Be stars in their evolutionary status and in their emission mechanism.WR stars: These stars are primarily characterized by emission lines. The only absorption lines seen are violet shifted (P Cyg type). Although in some cases emission lines appear which are similar to those found in some Of stars, the latter types always have some unshifted absorption lines present. Several Of stars have P Cyg profiles in some lines.


2019 ◽  
Vol 631 ◽  
pp. A118 ◽  
Author(s):  
Fabian Göttgens ◽  
Tim-Oliver Husser ◽  
Sebastian Kamann ◽  
Stefan Dreizler ◽  
Benjamin Giesers ◽  
...  

Aims. Globular clusters produce many exotic stars due to a much higher frequency of dynamical interactions in their dense stellar environments. Some of these objects were observed together with several hundred thousand other stars in our MUSE survey of 26 Galactic globular clusters. Assuming that at least a few exotic stars have exotic spectra (i.e. spectra that contain emission lines), we can use this large spectroscopic data set of over a million stellar spectra as a blind survey to detect stellar exotica in globular clusters. Methods. To detect emission lines in each spectrum, we modelled the expected shape of an emission line as a Gaussian curve. This template was used for matched filtering on the differences between each observed 1D spectrum and its fitted spectral model. The spectra with the most significant detections of Hα emission are checked visually and cross-matched with published catalogues. Results. We find 156 stars with Hα emission, including several known cataclysmic variables (CV) and two new CVs, pulsating variable stars, eclipsing binary stars, the optical counterpart of a known black hole, several probable sub-subgiants and red stragglers, and 21 background emission-line galaxies. We find possible optical counterparts to 39 X-ray sources, as we detected Hα emission in several spectra of stars that are close to known positions of Chandra X-ray sources. This spectral catalogue can be used to supplement existing or future X-ray or radio observations with spectra of potential optical counterparts to classify the sources.


2020 ◽  
Vol 498 (3) ◽  
pp. 4119-4133 ◽  
Author(s):  
P Short ◽  
M Nicholl ◽  
A Lawrence ◽  
S Gomez ◽  
I Arcavi ◽  
...  

ABSTRACT We present results from spectroscopic observations of AT 2018hyz, a transient discovered by the All-Sky Automated Survey for Supernova survey at an absolute magnitude of MV ∼ −20.2 mag, in the nucleus of a quiescent galaxy with strong Balmer absorption lines. AT 2018hyz shows a blue spectral continuum and broad emission lines, consistent with previous TDE candidates. High cadence follow-up spectra show broad Balmer lines and He i in early spectra, with He ii making an appearance after ∼70–100 d. The Balmer lines evolve from a smooth broad profile, through a boxy, asymmetric double-peaked phase consistent with accretion disc emission, and back to smooth at late times. The Balmer lines are unlike typical active galactic nucleus in that they show a flat Balmer decrement (Hα/Hβ ∼ 1.5), suggesting the lines are collisionally excited rather than being produced via photoionization. The flat Balmer decrement together with the complex profiles suggests that the emission lines originate in a disc chromosphere, analogous to those seen in cataclysmic variables. The low optical depth of material due to a possible partial disruption may be what allows us to observe these double-peaked, collisionally excited lines. The late appearance of He ii may be due to an expanding photosphere or outflow, or late-time shocks in debris collisions.


1994 ◽  
Vol 162 ◽  
pp. 384-385
Author(s):  
R. W. Hanuschik ◽  
W. Hummel ◽  
O. Dietle ◽  
J. Dachs ◽  
E. Sutorius

Since 1982, we are performing a long-term spectroscopic observing programme of emission-lines in Be stars (Hanuschik 1987, Hanuschik et al. 1988, Dachs et al. 1992, Sutorius 1992, Dietle 1993). We are using ESO's 1.4m CAT, at resolution R ≥ 50 000 and S/N = 100–1000. Spectral lines chosen are the optically thick Hα, Hβ lines and the optically thin Fe ii λ5317 line. The latter line is an extremely sharp tracer (Δvth = 2 km s−1) for the kinematics in the disks. We believe that our atlas shows the full range of intrinsic structure of these emission lines.


1994 ◽  
Vol 162 ◽  
pp. 206-207
Author(s):  
A.J. Norton ◽  
M.J. Coe ◽  
C. Everall ◽  
P. Roche ◽  
L. Bildsten ◽  
...  

EXO2030+375 consists of a neutron star in an eccentric 46 day orbit around a 20th magnitude Be-star companion (Coe et al., 1988; Parmar et al., 1989; Stollberg et al., 1993). The Be-star is thought to be surrounded by a shell/disc of material which is responsible for the infrared excess and Balmer emission lines which are characteristic of Be-stars in general. At periastron, the neutron star passes through this circumstellar material, giving rise to enhanced accretion onto the neutron star surface. As a result of this, the X-ray emission (pulsed at the neutron star spin period of 41.8s) increases dramatically, so producing the transient, outburst behaviour which is commonly seen in Be-star / X-ray binaries.


1987 ◽  
Vol 92 ◽  
pp. 437-439
Author(s):  
C. H. Poe ◽  
D. B. Friend

With their rotating, magnetic, radiation-driven wind model, Friend & MacGregor (1984) found that rapid rotation and an open magnetic field could enhance the mass loss rate (ṁ) and terminal velocity (V∞) in an 0 star wind. The purpose of this paper is to see if this model could help explain the winds from Be stars. The following features of Be star winds need to be explained: 1) Be stars exhibit linear polarization (Coyne & McLean 1982), indicating an enhanced equatorial density. 2) There appears to be enhanced mass loss (at low velocity) in the equatorial plane, from IRAS observations of Waters (1986). 3) The width of the broad Balmer emission lines remains unexplained.


2015 ◽  
Vol 2 (1) ◽  
pp. 99-102
Author(s):  
T. Yuasa

Results of magnetic cataclysmic variable studies performed with the Suzaku satellite are reviewed in this article. Particular emphasis is placed on the recent update of X-ray spectral model of intermediate polars, possible kinematically redshifted fluorescent Fe K emission lines, and the magnetic CV contribution to the Galactic ridge X-ray emission.


2000 ◽  
Vol 175 ◽  
pp. 236-239
Author(s):  
L.A. Balona ◽  
D. James

AbstractThe Be star 28 CMa was one of the first periodic Be stars to be discovered and shows very large line profile variations with a period of 1.37 d. Recently, it has been shown that the line profile and light variations can be modeled by a patch of gas suspended above the photosphere. We present echelle observations of the Hβ and Hϒ line and several helium and metal absorption lines. We show that the radial velocity variations of these lines are unchanged since they were first observed two decades ago. We also examined several emission lines of Fe II and show that they do not partake of the periodic variation. We attribute the periodic variations of the lines formed close to the photosphere to a co-rotating cloud, whereas the Fe II emission lines are formed in the circumstellar disk outside the co-rotating radius.


Sign in / Sign up

Export Citation Format

Share Document