Particle-in-cell simulation of two stream instability in the non-extensive statistics
AbstractWe have performed extensive one dimensional particle-in-cell (PIC) simulations to explore generation of electrostatic waves driven by two-stream instability (TSI) that arises due to the interaction between two symmetric counterstreaming electron beams. The electron beams are considered to be cold, collisionless and magnetic-field-free in the presence of neutralizing background of static ions. Here, electrons are described by the non-extensive q-distributions of the Tsallis statistics. Results shows that the electron holes structures are different for various q values such that: (i) for q > 1 cavitation of electron holes are more visible and the excited waves were more strong (ii) for q < 1 the degree of cavitation decreases and for q = 0.5 the holes are not distinguishable. Furthermore, time development of the velocity root-mean-square (VRMS) of electrons for different q-values demonstrate that the maximum energy conversion is increased upon increasing the non-extensivity parameter q up to the values q > 1. The normalized total energy history for a arbitrary entropic index q = 1.5, approves the energy conserving in our PIC simulation.