HETEROSKEDASTICITY AUTOCORRELATION ROBUST INFERENCE IN TIME SERIES REGRESSIONS WITH MISSING DATA

2018 ◽  
Vol 35 (03) ◽  
pp. 601-629
Author(s):  
Seung-Hwa Rho ◽  
Timothy J. Vogelsang

In this article, we investigate the properties of heteroskedasticity and autocorrelation robust (HAR) test statistics in time series regression settings when observations are missing. We primarily focus on the nonrandom missing process case where we treat the missing locations to be fixed asT→ ∞ by mapping the missing and observed cutoff dates into points on [0,1] based on the proportion of time periods in the sample that occur up to those cutoff dates. We consider two models, the amplitude modulated series (Parzen, 1963) regression model, which amounts to plugging in zeros for missing observations, and the equal space regression model, which simply ignores the missing observations. When the amplitude modulated series regression model is used, the fixed-blimits of the HAR test statistics depend on the locations of missing observations but are otherwise pivotal. When the equal space regression model is used, the fixed-blimits of the HAR test statistics have the standard fixed-blimits as in Kiefer and Vogelsang (2005). We discuss methods for obtaining fixed-bcritical values with a focus on bootstrap methods and find the naivei.i.d.bootstrap with missing dates fixed to be an effective and practical way to obtain the fixed-bcritical values.

1999 ◽  
Vol 3 (1) ◽  
pp. 69-83 ◽  
Author(s):  
Hui Boon Tan ◽  
Richard Ashley

A simple technique for directly testing the parameters of a time-series regression model for instability across frequencies is presented. The method can be implemented easily in the time domain, so that parameter instability across frequency bands can be conveniently detected and modeled in conjunction with other econometric features of the problem at hand, such as simultaneity, cointegration, missing observations, and cross-equation restrictions. The usefulness of the new technique is illustrated with an application to a cointegrated consumption-income regression model, yielding a straightforward test of the permanent income hypothesis.


2010 ◽  
Vol 19 (01) ◽  
pp. 107-121 ◽  
Author(s):  
JUAN CARLOS FIGUEROA GARCÍA ◽  
DUSKO KALENATIC ◽  
CESAR AMILCAR LÓPEZ BELLO

This paper presents a proposal based on an evolutionary algorithm for imputing missing observations in time series. A genetic algorithm based on the minimization of an error function derived from their autocorrelation function, mean, and variance is presented. All methodological aspects of the genetic structure are presented. An extended description of the design of the fitness function is provided. Four application examples are provided and solved by using the proposed method.


Author(s):  
Rati WONGSATHAN

The novel coronavirus 2019 (COVID-19) pandemic was declared a global health crisis. The real-time accurate and predictive model of the number of infected cases could help inform the government of providing medical assistance and public health decision-making. This work is to model the ongoing COVID-19 spread in Thailand during the 1st and 2nd phases of the pandemic using the simple but powerful method based on the model-free and time series regression models. By employing the curve fitting, the model-free method using the logistic function, hyperbolic tangent function, and Gaussian function was applied to predict the number of newly infected patients and accumulate the total number of cases, including peak and viral cessation (ending) date. Alternatively, with a significant time-lag of historical data input, the regression model predicts those parameters from 1-day-ahead to 1-month-ahead. To obtain optimal prediction models, the parameters of the model-free method are fine-tuned through the genetic algorithm, whereas the generalized least squares update the parameters of the regression model. Assuming the future trend continues to follow the past pattern, the expected total number of patients is approximately 2,689 - 3,000 cases. The estimated viral cessation dates are May 2, 2020 (using Gaussian function), May 4, 2020 (using a hyperbolic function), and June 5, 2020 (using a logistic function), whereas the peak time occurred on April 5, 2020. Moreover, the model-free method performs well for long-term prediction, whereas the regression model is suitable for short-term prediction. Furthermore, the performances of the regression models yield a highly accurate forecast with lower RMSE and higher R2 up to 1-week-ahead. HIGHLIGHTS COVID-19 model for Thailand during the first and second phases of the epidemic The model-free method using the logistic function, hyperbolic tangent function, and Gaussian function  applied to predict the basic measures of the outbreak Regression model predicts those measures from one-day-ahead to one-month-ahead The parameters of the model-free method are fine-tuned through the genetic algorithm  GRAPHICAL ABSTRACT


1994 ◽  
Vol 10 (3-4) ◽  
pp. 672-700 ◽  
Author(s):  
Graham Elliott ◽  
James H. Stock

The distribution of statistics testing restrictions on the coefficients in time series regressions can depend on the order of integration of the regressors. In practice, the order of integration is rarely known. We examine two conventional approaches to this problem — simply to ignore unit root problems or to use unit root pretests to determine the critical values for second-stage inference—and show that both exhibit substantial size distortions in empirically plausible situations. We then propose an alternative approach in which the second-stage critical values depend continuously on a first-stage statistic that is informative about the order of integration of the regressor. This procedure has the correct size asymptotically and good local asymptotic power.


Sign in / Sign up

Export Citation Format

Share Document