Seed-dispersal and seedling recruitment patterns by the last Neotropical megafaunal element in Amazonia, the tapir

2000 ◽  
Vol 16 (3) ◽  
pp. 369-385 ◽  
Author(s):  
José M. V. Fragoso ◽  
Jean M. Huffman

Tapirs (Tapiridae) are the last representatives of the Pleistocene megafauna of South and Central America. How they affect the ecology of plants was examined by studying the diversity, abundance, and condition of seeds defecated by the lowland tapir (Tapirus terrestris) in Amazonian Brazil. Additionally, the spatio-temporal pattern of the seed-rain and seed-shadows generated by tapirs was recorded. Three hundred and fifty-six tapir faeces were examined. Eleven per cent were found in water (n = 41), while 88% were located on dry land (n = 315). Of those found on dry land, 84% were located at sites that flood seasonally, while 14% of the total were encountered at forest sites that do not flood. In 127 faeces checked in the laboratory over 12 906 seeds of at least 39 species were found. Seed viability ranged from 65% for Maximiliana maripa to 98% for Enterolobium schomburgkii. Of nine seed species planted in the laboratory, seven germinated within 4 wk, with one species achieving an 89% germination rate. For many species recruitment to the seedling stage was also high under natural conditions, with 13 plant species occurring as seedlings in older faeces. Tapir generated seed-rain occurred throughout the year, with seeds defecated in all months. Two temporal patterns in species seed rain occurred: (1) contiguous monthly occurrence with peaks in abundance, and (2) discontinuous occurrence (time clumped) with small (a few months) to large (many months to more than a year) temporal gaps. The highest diversity of seeds appeared in April, at the end of the dry season. As the last of the Pleistocene megafauna of the region, tapirs may have particular importance as dispersers of large seeds and generators of unique seed dispersion patterns.

2004 ◽  
Vol 34 (8) ◽  
pp. 1634-1641 ◽  
Author(s):  
W J de Groot ◽  
P M Bothwell ◽  
S W Taylor ◽  
B M Wotton ◽  
B J Stocks ◽  
...  

The effect of crown fires on Pinus banksiana Lamb. regeneration was studied in separate forest- and cone-burning experiments. Nine plots (0.56–2.25 ha) of jack pine trees near Fort Providence, Northwest Territories, were burned using crown fires to determine the effects of fire intensity, rate of fire spread, depth of burn, and postfire duff depth on seed viability and regeneration. Fire intensities were 36 902 – 93 476 kW/m, and fire spread rates were 24–70 m/min. Depths of burn were low (2.0–3.6 cm), and postfire duff depths averaged 2.0–5.5 cm. Postfire seed rain was highly variable (64–634 seeds/m2), but seed viability was near 67% on all plots. Jack pine regeneration was also highly variable (7–79 seedlings/m2). In the cone-burning experiment, the germination rate increased from 41% (unheated cones) to 64% after 10 s of burning but decreased sharply after 30 s. Flame temperature did not significantly affect viability. Cone-burning results suggest that the postfire seed rain originated from the upper canopy, where flame duration was 5–15 s, and seed in the lower canopy was consumed by fire. Seed rain and regeneration were primarily influenced by understory fine fuel consumption (and therefore, fire intensity), tree height, and live crown base height.


2021 ◽  
Vol 14 (1) ◽  
pp. 3-8
Author(s):  
Philip W. Tipping ◽  
Melissa R. Martin ◽  
Jeremiah R. Foley ◽  
Ryan M. Pierce ◽  
Lyn A. Gettys

AbstractThe potential of Melaleuca quinquenervia (Cav.) S.T. Blake to reinvade cleared areas was evaluated over a 13-yr period that included two wildfires and the introduction of biological control agents. The first wildfire occurred in 1998 and was followed by a mean of 591.5 recruited seedlings m−2. Recruits from that fire were cleared 7 yr later in July 2005 for a second experiment to evaluate seedling recruitment into cleared areas. Seed rain, seedling recruitment and mortality, and sapling growth rates were measured in four plots located around individual large reproductive trees. A second natural wildfire in 2007 burned through those plots, leading to increases in seed rain followed by a pulse in recruitment of 21.04 seedlings m−2, 96.5% fewer than after the 1998 fire. Recruits in half of the plots around each tree were then treated with regular applications of an insecticide to restrict herbivory by biological control agents, while herbivory was not restricted in the other half. There was no difference in seedling mortality between treatments 1,083 d post-fire (2007) with 96.6% seedling mortality in the unrestricted herbivory treatment and 89.4% mortality in the restricted herbivory treatment. Recruits subjected to the restricted herbivory treatment grew taller than those in the unrestricted herbivory treatment, 101.3 cm versus 37.4 cm. Many of the recruits were attacked by the biological control agents, which slowed their growth. Although solitary M. quinquenervia trees retain some capacity to reinvade areas under specific circumstances, there was a downward trend in their overall invasiveness at this site, with progressively smaller recruitment cohorts due to biological control agents. Land managers should prioritize removing large reproductive trees over treating recently recruited populations, which can be left for many years for the biological control agents to suppress before any additional treatment would be needed.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Sobifagha Princess Bell-Gam ◽  
Luke Chinaru Nwosu ◽  
Kayode David Ileke ◽  
Uwaoma Otuodichinma Aguwa

Abstract Background The use of X-ray irradiation in the control of the maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) infesting stored maize was tested at 60, 70 and 80 KeV as part of the international concerted efforts to save maize production and enhance food security. Investigations were done in the laboratory at mean temperature and relative humidity of 29.2 °C and 75.7%, respectively using three varieties of maize. The possibility that X-ray irradiation can affect the viability of maize grains when planted after weevil control process was also evaluated in the laboratory. Standard methods were used to achieve the specific objectives, and X-ray machine snap constituted the exposure time for each dose. Results The results revealed 10% mortality of adult weevils after 24 h and 40% mortality after a period of 7 days. The result indicates moderate effect on mortality. Progressive increase in mortality was recorded as dose increased from 60 to 80 KeV. X-ray irradiation at the doses tested did not significantly (P > 0.05) restrict S. zeamais emergence from maize grains and did not also significantly protect grains against damage and flour production. There was no difference in the pattern of daily emergence of new progenies and pattern of accumulated emergence. The relationship between X-ray irradiation doses and weight of emerging progenies require more specific analysis. Absence of significant difference between the viability of irradiated grains and un-irradiated grains strongly suggests that X-ray irradiation did not adversely affect seed viability, and this gives irradiation technique an opportunity of higher acceptability in agriculture. Conclusions We recommend > 80 KeV of X-ray irradiation or its incorporation into integrated pest management system in order to achieve effective post-harvest control of the pest.


1996 ◽  
Vol 74 (4) ◽  
pp. 568-572 ◽  
Author(s):  
Stefan Andersson

The present study of the winter annual Crepis tectorum examines the relationship between seed (achene) size and the extent to which seeds resist germination during the year of their production. I carried out two seed burial experiments, one at an outcrop site occupied by a small-seeded population, and another in an experimental garden with soil from the same field site, with seeds representing the local population and a segregating generation of a cross between two other populations. Using logistic regression with data corrected for seed viability, I found an association between small seed size and failure to germinate in the first autumn. The small seed size characterizing many outcrop populations may have evolved as a response to selection for delaying germination in a habitat subject to unpredictable droughts during the growth season. Keywords: Crepis tectorum, germination, seed bank, seed size.


2017 ◽  
Vol 31 (1) ◽  
pp. 100-110 ◽  
Author(s):  
Scott N. White ◽  
Shanthanu Krishna Kumar

Sheep and hair fescue are perennial, tuft forming grasses that spread by seed and form dense sods in wild blueberry fields. These sods compete with the crop for resources and hinder harvest. Field and greenhouse studies were conducted in 2015 to evaluate 1) the effect of sequential glufosinate and foramsulfuron applications on suppression of fescues in the greenhouse and field, and 2) efficacy of glufosinate and foramsulfuron on fescue seedlings when applied at 2, 4, 6, and 8 wk after seedling emergence in the greenhouse. Glufosinate applications at 750 and 1,005 g ai ha−1followed by foramsulfuron application at 35 g ai ha−1reduced fescue leaf number and biomass relative to foramsulfuron application alone in the greenhouse. In the field study, fescue flowering tuft density, tuft inflorescence height, seed production, and seed viability were reduced by foramsulfuron alone, but there was a trend towards lower seed production and tuft height when fescues were treated with glufosinate at 1,005 g ha−1followed by foramsulfuron. Foramsulfuron caused low seedling mortality at all application timings evaluated, but glufosinate caused >90% mortality in seedlings when applied at 2, 4, 6, or 8 wk after seedling emergence. Our results suggest that sequential applications of these herbicides are less effective under field conditions relative to results obtained in the greenhouse, though burndown glufosinate applications may have a role in reducing fescue seedling recruitment. Additional research should be conducted to determine the effect of early spring and autumn glufosinate applications on fescue seedling recruitment and suppression of established fescue tufts with subsequent foramsulfuron applications.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 490
Author(s):  
Saeng Geul Baek ◽  
Jin Hyun Im ◽  
Myeong Ja Kwak ◽  
Cho Hee Park ◽  
Mi Hyun Lee ◽  
...  

This study aimed to determine the type of seed dormancy and to identify a suitable method of dormancy-breaking for an efficient seed viability test of Lysimachia coreana Nakai. To confirm the effect of gibberellic acid (GA3) on seed germination at different temperatures, germination tests were conducted at 5, 15, 20, 25, 20/10, and 25/15 °C (12/12 h, light/dark), using 1% agar with 100, 250, and 500 mg·L−1 GA3. Seeds were also stratified at 5 and 25/15 °C for 6 and 9 weeks, respectively, and then germinated at the same temperature. Seeds treated with GA3 demonstrated an increased germination rate (GR) at all temperatures except 5 °C. The highest GR was 82.0% at 25/15 °C and 250 mg·L−1 GA3 (4.8 times higher than the control (14.0%)). Additionally, GR increased after cold stratification, whereas seeds did not germinate after warm stratification at all temperatures. After cold stratification, the highest GR was 56.0% at 25/15 °C, which was lower than the GR observed after GA3 treatment. We hypothesized that L. coreana seeds have a non-deep physiological dormancy and concluded that 250 mg·L−1 GA3 treatment is more effective than cold stratification (9 weeks) for L. coreana seed-dormancy-breaking.


2021 ◽  
Vol 42 ◽  
pp. e69341
Author(s):  
Miguel Ángel González Pérez ◽  
Nereida Cabrera-García ◽  
Isabel Cayon-Fernández

Conservation seed banks are essential for ex-situ conservation of genetic biodiversity. These institutions are especially relevant for threatened species and play a vital role in their conservation by preserving genetic material. However, samples deposited in the seed banks must germinate when necessary to use them (i.e., recovery plans, etc.). This study uses four accessions of the endemic endangered species from Gran Canaria Island (Canary Islands), Isoplexis isabelliana (Webb & Berthel.) Masf. (Scrophulariaceae). Germination tests were carried out to measure seed viability through time and the possible impact of seed storage on their viability. These accessions have been kept in the seed bank for four months to thirty years under different storage conditions. Germination results differed for seeds after 45 days of exposition using 16 hours light and 8 hours darkness at 17 °C. Accessions kept in the seed bank, independently of storage, showed a high germination percentage (89%). Whereas the accessions with rough storage conditions showed a 0% germination rate. The results highlighted the good state of conservation of the material deposited in the Seed Bank of the Botanical Garden "Viera y Clavijo" and the reliability of the temperature and humidity conditions in which the seeds of I. isabelliana have been stored. We consider these results as momentous since several natural populations of I. isabelliana has been affected by the last forest fire on the island.


1988 ◽  
Vol 4 (3) ◽  
pp. 239-252 ◽  
Author(s):  
Carol K. Augspurger ◽  
Susan E. Franson

ABSTRACTA total of 52,467 wind-dispersed seeds from 14 tree and 32 liana species fell into 1720 seed traps in 43 paired light-gap and adjacent forest sites on Barro Colorado Island, Panama. Summed at the community level, many more wind-dispersed seeds were collected from light-gaps (61%) than from forest sites (39%). They accumulated from March through May, 1984 to a density of 328 m-2 in gaps and 207 m-2 in forest sites. In contrast, only 33% of the total of 2782 non-wind-dispersed seeds were collected in gaps. Due to the extreme heterogeneity of the seed rain, these differences between gap and forest sites were not statistically significant at the community-level. Gap sites received more wind-dispersed seeds than adjacent forest sites in only 20 of 43 locations and in 13 of 20 species, especially those with individuals of high fecundity near gap sites. Of the estimated 105 million wind-dispersed seeds contributing to the seed rain of the 50 ha study plot, only 4.1% were dispersed to the rare gap sites that enhance the establishment and growth of seedlings for many of these species.


2014 ◽  
Vol 65 (8) ◽  
pp. 767 ◽  
Author(s):  
M. L. Mitchell ◽  
J. M. Virgona ◽  
J. L. Jacobs ◽  
D. R. Kemp

Microlaena (Microlaena stipoides var. stipoides (Labill.) R.Br.) is a C3 perennial grass that is native to areas of south-eastern Australia. In this region, perennial grasses are important for the grazing industries because of their extended growing season and persistence over several years. This series of experiments focused on the population biology of Microlaena by studying the phenology (when seed was set), seed rain (how much seed was produced and where it fell), seed germination, germinable seedbank, seed predation and seedling recruitment in a pasture. Experiments were conducted at Chiltern, in north-eastern Victoria, on an existing native grass pasture dominated by Microlaena. Seed yields were substantial (mean 800 seeds m–2), with seed rain occurring over December–May. Microlaena has two distinct periods of high seed rain, in early summer and in early autumn. Seed predation is high. Within a 24-h period during peak seed production, up to 30% of Microlaena seed was removed from a pasture, primarily by ants. Microlaena seedlings recruited throughout an open paddock; however, seedling density was low (5 seedlings m–2). Microlaena represented only low numbers in the seedbank (0.01–0.05% of total); hence, any seedlings of Microlaena that germinate from the seedbank would face immense competition from other species. Management strategies for Microlaena-dominant pastures need to focus on the maintenance of existing plants.


Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1184
Author(s):  
Eva Gazagne ◽  
Jean-Luc Pitance ◽  
Tommaso Savini ◽  
Marie-Claude Huynen ◽  
Pascal Poncin ◽  
...  

Research Highlights: Frugivores able to disperse large seeds over large distances are indispensable for seedling recruitment, colonization and regeneration of tropical forests. Understanding their effectiveness as seed dispersal agents in degraded habitat is becoming a pressing issue because of escalating anthropogenic disturbance. Although of paramount importance in the matter, animal behaviour’s influence on seed shadows (i.e., seed deposition pattern of a plant population) is difficult to evaluate by direct observations. Background and Objectives: We illustrated a modeling approach of seed shadows incorporating field-collected data on a troop of northern pigtailed macaques (Macaca leonina) inhabiting a degraded forest fragment in Thailand, by implementing a mechanistic model of seed deposition with random components. Materials and Methods: We parameterized the mechanistic model of seed deposition with macaque feeding behavior (i.e., consumed fruit species, seed treatments), gut and cheek pouch retention time, location of feeding and sleeping sites, monthly photoperiod and movement patterns based on monthly native fruit availability using Hidden Markov models (HMM). Results: We found that northern pigtailed macaques dispersed at least 5.5% of the seeds into plantation forests, with a majority of medium- to large-seeded species across large distances (mean > 500 m, maximum range of 2300 m), promoting genetic mixing and colonization of plantation forests. Additionally, the macaques produced complementary seed shadows, with a sparse distribution of seeds spat out locally (mean >50 m, maximum range of 870 m) that probably ensures seedling recruitment of the immediate plant populations. Conclusions: Macaques’ large dispersal distance reliability is often underestimated and overlooked; however, their behavioral flexibility places them among the last remaining dispersers of large seeds in disturbed habitats. Our study shows that this taxon is likely to maintain significant seed dispersal services and promote forest regeneration in degraded forest fragments.


Sign in / Sign up

Export Citation Format

Share Document