SOME NEW RESULTS ON THE LARGEST ORDER STATISTICS FROM MULTIPLE-OUTLIER GAMMA MODELS
In this paper, we carry out stochastic comparisons of the largest order statistics arising from multiple-outlier gamma models with different both shape and scale parameters in the sense of various stochastic orderings including the likelihood ratio order, star order and dispersive order. It is proved, among others, that the weak majorization order between the scale parameter vectors along with the majorization order between the shape parameter vectors imply the likelihood ratio order between the largest order statistics. A quite general sufficient condition for the star order is presented. The new results established here strengthen and generalize some of the results known in the literature. Numerical examples and applications are also provided to explicate the theoretical results.