scholarly journals OPTIMAL MOMENT INEQUALITIES FOR ORDER STATISTICS FROM NONNEGATIVE RANDOM VARIABLES

Author(s):  
Nickos Papadatos

We obtain the best possible upper bounds for the moments of a single-order statistic from independent, nonnegative random variables, in terms of the population mean. The main result covers the independent identically distributed case. Furthermore, the case of the sample minimum for merely independent (not necessarily identically distributed) random variables is treated in detail.

2021 ◽  
Vol 73 (1) ◽  
pp. 62-67
Author(s):  
Ibrahim A. Ahmad ◽  
A. R. Mugdadi

For a sequence of independent, identically distributed random variable (iid rv's) [Formula: see text] and a sequence of integer-valued random variables [Formula: see text], define the random quantiles as [Formula: see text], where [Formula: see text] denote the largest integer less than or equal to [Formula: see text], and [Formula: see text] the [Formula: see text]th order statistic in a sample [Formula: see text] and [Formula: see text]. In this note, the limiting distribution and its exact order approximation are obtained for [Formula: see text]. The limiting distribution result we obtain extends the work of several including Wretman[Formula: see text]. The exact order of normal approximation generalizes the fixed sample size results of Reiss[Formula: see text]. AMS 2000 subject classification: 60F12; 60F05; 62G30.


2003 ◽  
Vol 40 (01) ◽  
pp. 226-241 ◽  
Author(s):  
Sunder Sethuraman

Let X 1, X 2, …, X n be a sequence of independent, identically distributed positive integer random variables with distribution function F. Anderson (1970) proved a variant of the law of large numbers by showing that the sample maximum moves asymptotically on two values if and only if F satisfies a ‘clustering’ condition, In this article, we generalize Anderson's result and show that it is robust by proving that, for any r ≥ 0, the sample maximum and other extremes asymptotically cluster on r + 2 values if and only if Together with previous work which considered other asymptotic properties of these sample extremes, a more detailed asymptotic clustering structure for discrete order statistics is presented.


1978 ◽  
Vol 15 (03) ◽  
pp. 639-644 ◽  
Author(s):  
Peter Hall

LetXn1≦Xn2≦ ··· ≦Xnndenote the order statistics from a sample ofnindependent, identically distributed random variables, and suppose that the variablesXnn, Xn,n–1, ···, when suitably normalized, have a non-trivial limiting joint distributionξ1,ξ2, ···, asn → ∞. It is well known that the limiting distribution must be one of just three types. We provide a canonical representation of the stochastic process {ξn,n≧ 1} in terms of exponential variables, and use this representation to obtain limit theorems forξnasn →∞.


1992 ◽  
Vol 29 (03) ◽  
pp. 557-574 ◽  
Author(s):  
Jan Beirlant ◽  
Jozef L. Teugels

Let X (1) ≦ X (2) ≦ ·· ·≦ X (N(t)) be the order statistics of the first N(t) elements from a sequence of independent identically distributed random variables, where {N(t); t ≧ 0} is a renewal counting process independent of the sequence of X's. We give a complete description of the asymptotic distribution of sums made from the top kt extreme values, for any sequence kt such that kt → ∞, kt /t → 0 as t → ∞. We discuss applications to reinsurance policies based on large claims.


2008 ◽  
Vol 45 (2) ◽  
pp. 575-579 ◽  
Author(s):  
Devdatt Dubhashi ◽  
Olle Häggström

For an order statistic (X1:n,…,Xn:n) of a collection of independent but not necessarily identically distributed random variables, and any i ∈ {1,…,n}, the conditional distribution of (Xi+1:n,…,Xn:n) given Xi:n > s is shown to be stochastically increasing in s. This answers a question by Hu and Xie (2006).


2019 ◽  
Vol 17 (1) ◽  
pp. 439-451
Author(s):  
Yu Miao ◽  
Huanhuan Ma ◽  
Shoufang Xu ◽  
Andre Adler

Abstract Let {Xn,k, 1 ≤ k ≤ mn, n ≥ 1} be an array of independent random variables from the Pareto distribution. Let Xn(k) be the kth largest order statistic from the nth row of the array and set Rn,in,jn = Xn(jn)/Xn(in) where jn < in. The aim of this paper is to study the complete convergence of the ratios {Rn,in,jn, n ≥ 1}.


1974 ◽  
Vol 11 (04) ◽  
pp. 762-770 ◽  
Author(s):  
H. A. David ◽  
J. Galambos

In a random sample of n pairs (X r , Y r ), r = 1, 2, …, n, drawn from a bivariate normal distribution, let Xr :n be the rth order statistic among the Xr and let Y [r:n] be the Y-variate paired with Xr :n . The Y[r:n] , which we call concomitants of the order statistics, arise most naturally in selection procedures based on the Xr :n . It is shown that asymptotically the k quantities k fixed, are independent, identically distributed variates. In addition, putting Rt,n for the number of integers j for which , the asymptotic distribution and all moments of n– 1 Rt, n are determined for t such that t/n → λ with 0 &lt; λ &lt; 1.


2003 ◽  
Vol 40 (1) ◽  
pp. 226-241 ◽  
Author(s):  
Sunder Sethuraman

Let X1, X2, …, Xn be a sequence of independent, identically distributed positive integer random variables with distribution function F. Anderson (1970) proved a variant of the law of large numbers by showing that the sample maximum moves asymptotically on two values if and only if F satisfies a ‘clustering’ condition, In this article, we generalize Anderson's result and show that it is robust by proving that, for any r ≥ 0, the sample maximum and other extremes asymptotically cluster on r + 2 values if and only if Together with previous work which considered other asymptotic properties of these sample extremes, a more detailed asymptotic clustering structure for discrete order statistics is presented.


1980 ◽  
Vol 17 (02) ◽  
pp. 570-573 ◽  
Author(s):  
Barry C. Arnold

Let X 1, X 2, …, Xn be independent identically distributed positive integer-valued random variables with order statistics X 1:n , X 2:n , …, Xn :n. If the Xi 's have a geometric distribution then the conditional distribution of Xk +1:n – Xk :n given Xk+ 1:n – Xk :n &gt; 0 is the same as the distribution of X 1:n–k . Also the random variable X 2:n – X 1:n is independent of the event [X 1:n = 1]. Under mild conditions each of these two properties characterizes the geometric distribution.


1975 ◽  
Vol 12 (01) ◽  
pp. 164-166
Author(s):  
Aaron Tenenbein

Let Y, X 1, X 2, …, Xn be a set of n + 1 independently and uniformly distributed random variables on the interval (0, 1). The distribution of the length of the minimum path starting at Y which covers the other n points is derived. The solution is interesting in that it involves finding the distribution of an order statistic of a function of order statistics.


Sign in / Sign up

Export Citation Format

Share Document