Two notes on spectral synthesis for discrete Abelian groups

Author(s):  
R. J. Elliott

Introduction. Spectral synthesis is the study of whether functions in a certain set, usually a translation invariant subspace (a variety), can be synthesized from certain simple functions, exponential monomials, which are contained in the set. This problem is transformed by considering the annihilator ideal in the dual space, and after taking the Fourier transform the problem becomes one of deciding whether a function is in a certain ideal, that is, we have a ‘division problem’. Because of this we must take into consideration the possibility of the Fourier transforms of functions having zeros of order greater than or equal to 1. This is why, in the original situation, we study whether varieties are generated by their exponential monomials, rather than just their exponential functions. This viewpoint of the problem as a division question, of course, perhaps throws light on why Wiener's Tauberian theorem works, and is implicit in the construction of Schwartz's and Malliavin's counter examples to spectral synthesis in L1(G) (cf. Rudin ((4))).

Author(s):  
Angela A. Albanese ◽  
Claudio Mele

AbstractIn this paper we continue the study of the spaces $${\mathcal O}_{M,\omega }({\mathbb R}^N)$$ O M , ω ( R N ) and $${\mathcal O}_{C,\omega }({\mathbb R}^N)$$ O C , ω ( R N ) undertaken in Albanese and Mele (J Pseudo-Differ Oper Appl, 2021). We determine new representations of such spaces and we give some structure theorems for their dual spaces. Furthermore, we show that $${\mathcal O}'_{C,\omega }({\mathbb R}^N)$$ O C , ω ′ ( R N ) is the space of convolutors of the space $${\mathcal S}_\omega ({\mathbb R}^N)$$ S ω ( R N ) of the $$\omega $$ ω -ultradifferentiable rapidly decreasing functions of Beurling type (in the sense of Braun, Meise and Taylor) and of its dual space $${\mathcal S}'_\omega ({\mathbb R}^N)$$ S ω ′ ( R N ) . We also establish that the Fourier transform is an isomorphism from $${\mathcal O}'_{C,\omega }({\mathbb R}^N)$$ O C , ω ′ ( R N ) onto $${\mathcal O}_{M,\omega }({\mathbb R}^N)$$ O M , ω ( R N ) . In particular, we prove that this isomorphism is topological when the former space is endowed with the strong operator lc-topology induced by $${\mathcal L}_b({\mathcal S}_\omega ({\mathbb R}^N))$$ L b ( S ω ( R N ) ) and the last space is endowed with its natural lc-topology.


Author(s):  
M. Younus Bhat ◽  
Aamir H. Dar

The linear canonical transform (LCT) provides a unified treatment of the generalized Fourier transforms in the sense that it is an embodiment of several well-known integral transforms including the Fourier transform, fractional Fourier transform, Fresnel transform. Using this fascinating property of LCT, we, in this paper, constructed associated wavelet packets. First, we construct wavelet packets corresponding to nonuniform Multiresolution analysis (MRA) associated with LCT and then those corresponding to vector-valued nonuniform MRA associated with LCT. We investigate their various properties by means of LCT.


Geophysics ◽  
1985 ◽  
Vol 50 (9) ◽  
pp. 1500-1501
Author(s):  
B. N. P. Agarwal ◽  
D. Sita Ramaiah

Bhimasankaram et al. (1977) used Fourier spectrum analysis for a direct approach to the interpretation of gravity anomaly over a finite inclined dike. They derived several equations from the real and imaginary components and from the amplitude and phase spectra to relate various parameters of the dike. Because the width 2b of the dike (Figure 1) appears only in sin (ωb) term—ω being the angular frequency—they determined its value from the minima/zeroes of the amplitude spectra. The theoretical Fourier spectrum uses gravity field data over an infinite distance (length), whereas field observations are available only for a limited distance. Thus, a set of observational data is viewed as a product of infinite‐distance data with an appropriate window function. Usually, a rectangular window of appropriate distance (width) and of unit magnitude is chosen for this purpose. The Fourier transform of the finite‐distance and discrete data is thus represented by convolution operations between Fourier transforms of the infinite‐distance data, the window function, and the comb function. The combined effect gives a smooth, weighted average spectrum. Thus, the Fourier transform of actual observed data may differ substantially from theoretic data. The differences are apparent for low‐ and high‐frequency ranges. As a result, the minima of the amplitude spectra may change considerably, thereby rendering the estimate of the width of the dike unreliable from the roots of the equation sin (ωb) = 0.


2020 ◽  
pp. 1-26
Author(s):  
Ricardo Estrada ◽  
Jasson Vindas ◽  
Yunyun Yang

We first construct a space [Formula: see text] whose elements are test functions defined in [Formula: see text] the one point compactification of [Formula: see text] that have a thick expansion at infinity of special logarithmic type, and its dual space [Formula: see text] the space of sl-thick distributions. We show that there is a canonical projection of [Formula: see text] onto [Formula: see text] We study several sl-thick distributions and consider operations in [Formula: see text] We define and study the Fourier transform of thick test functions of [Formula: see text] and thick tempered distributions of [Formula: see text] We construct isomorphisms [Formula: see text] [Formula: see text] that extend the Fourier transform of tempered distributions, namely, [Formula: see text] and [Formula: see text] where [Formula: see text] are the canonical projections of [Formula: see text] or [Formula: see text] onto [Formula: see text] We determine the Fourier transform of several finite part regularizations and of general thick delta functions.


Geophysics ◽  
1977 ◽  
Vol 42 (7) ◽  
pp. 1450-1457 ◽  
Author(s):  
Robert D. Regan ◽  
William J. Hinze

The mathematical structure of the Fourier transformations of theoretical gravity anomalies of several geometrically simple bodies appears to have distinct advantages in the interpretation of these anomalies. However, the practical application of this technique is dependent upon the transformation of an observed gravity anomaly of finite length. Ideally, interpretation methods similar to those for the transformations of the theoretical gravity anomalies should be developed for anomalies of a finite length. However, the mathematical complexity of the convolution integrals in the transform calculations of theoretical anomaly segments indicate that no general closed analytical solution useful for interpretation is available. Thus, in order to utilize the Fourier transform interpretation method, the data must be of sufficient length for the finite transform to closely approximate the theoretical transforms.


2016 ◽  
Vol 8 (1) ◽  
pp. 14 ◽  
Author(s):  
S. M. Abrarov ◽  
B. M. Quine

<p>This paper presents a new approach in application of the Fourier transform to the complex error function resulting in an efficient rational approximation. Specifically, the computational test shows that with only $17$ summation terms the obtained rational approximation of the complex error function provides accuracy ${10^{ - 15}}$ over the most domain of practical importance $0 \le x \le 40,000$ and ${10^{ - 4}} \le y \le {10^2}$ required for the HITRAN-based spectroscopic applications. Since the rational approximation does not contain trigonometric or exponential functions dependent upon the input parameters $x$ and $y$, it is rapid in computation. Such an example demonstrates that the considered methodology of the Fourier transform may be advantageous in practical applications.</p>


1988 ◽  
Vol 3 (1) ◽  
pp. 32-38 ◽  
Author(s):  
David G. Cameron ◽  
Ernest E. Armstrong

AbstractFourier transform methods of smoothing and interpolation are applied to X-ray diffraction data. It is shown that, frequently, too small a step size is used. Major gains are to be expected by selection of the optimum step size and use of these methods.A comparison of Fourier transforms of diffractograms of quartz measured between 67 and 69° 2θ, collected at varying step intervals (0.1 to 0.01° 2θ) was used to illustrate these applications. By examining the Fourier transform of the diffractogram and noting where it decays to die baseline, a reasonable estimate of the optimal step interval can be obtained. In addition, Fourier interpolation can be used to enhance the appearance of the diffractogram, approximating a continuous plot.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Nassar H. S. Haidar

We report on inversion of the Fourier transform when the frequency variable can be scaled in a variety of different ways that improve the resolution of certain parts of the frequency domain. The corresponding inverse Fourier transform is shown to exist in the form of two dual scale-frequency series. Upon discretization of the continuous scale factor, this Fourier transform series inverse becomes a certain nonharmonic double series, a discretized scale-frequency (DSF) series. The DSF series is also demonstrated, theoretically and practically, to be rate-optimizable with respect to its two free parameters, when it satisfies, as an entropy maximizer, a pertaining recursive nonlinear programming problem incorporating the entropy-based uncertainty principle.


Author(s):  
David Mustard

AbstractUncertainty principles like Heisenberg's assert an inequality obeyed by some measure of joint uncertainty associated with a function and its Fourier transform. The more groups under which that measure is invariant, the more that measure represents an intrinsic property of the underlying object represented by the given function. The Fourier transform is imbedded in a continuous group of operators, the fractional Fourier transforms, but the Heisenberg measure of overall spread turns out not to be invariant under that group. A new family is developed of measures that are invariant under the group of fractional Fourier transforms and that obey associated uncertainty principles. The first member corresponds to Heisenberg's measure but is generally smaller than his although equal to it in special cases.


Author(s):  
Per Sjölin ◽  
Fernando Soria

We study a connection between the L2 average decay of the Fourier transform of functions with respect to a given measure and the Hausdorff behaviour of that measure.


Sign in / Sign up

Export Citation Format

Share Document