scholarly journals On a model for interference between searching insect parasites

Author(s):  
P. K. Pollett

AbstractThe purpose of this paper is to study a stochastic model which assesses the effect of mutual interference on the searching efficiency in populations of insect parasites. By looking carefully at the assumptions which govern the model, I shall explain why the searching efficiency is of the same order as the total number, N, in the population, a conclusion which is consistent with the predictions of population biologists; previous studies have reached the conclusion that the efficiency is of order . The major results of the paper establish normal approximations for the distribution of the numbers of active parasites. These are valid at all stages of the process, in particular the non-equilibrium phase, where explicit analytic formulae for the state-probabilities are unavailable.

Soft Matter ◽  
2018 ◽  
Vol 14 (18) ◽  
pp. 3632-3639
Author(s):  
A. Bentivoglio ◽  
M. Ancona ◽  
C. A. Brackley ◽  
G. Gonnella ◽  
D. Marenduzzo

We study a variant of a recently proposed non-equilibrium stochastic model for supercoiling-dependent transcription in DNA.


2014 ◽  
Vol 783-786 ◽  
pp. 766-770
Author(s):  
Yan Lin He ◽  
Na Qiong Zhu ◽  
Wei Sen Zheng ◽  
Xiao Gang Lu ◽  
Lin Li

The non-equilibrium microstructure of Fe-C-Mn-Si TRIP steel is designed bythermodynamic and kinetic calculation. The upper limit of bainitic transformation temperature iscalculated and compared to that characterized by CCT curve determination. s M temperature isdetermined based on thermodynamics of martensitic transformation and sublattice model. Thecalculation is conducted via TQ6-patch in Thermo-Calc software. Comparison between thecalculations and experiments reveals the relationship between non-equilibrium phase compositionand heat treatment parameters which can be utilized to achieve the elaborate design of alloy and heattreatment for super TRIP steel.


2003 ◽  
Vol 39 (1-2) ◽  
pp. 383-405 ◽  
Author(s):  
G. Kaptay

In the present paper thermodynamic limitations will be derived and summarized in the form of Equilibrium Electrochemical Synthesis (EES) diagrams, in order to predict the composition of the equilibrium phase, synthesized by galvanostatic co-deposition of components on inert electrodes. As a thermodynamic parameter, a difference of deposition potentials of pure components ( ?E) on inert cathodes is used (this parameter is a function of melt composition and temperature). Generally, the EES diagram predicts the equilibrium composition of the alloy as function temperature and ?E. However, for systems with homogeneous alloy formation the composition- ?E diagrams, drawn at a fixed temperature are more informative. As examples EES diagrams are constructed for the liquid Mg-Nd alloy, for some A(III)-B(V) (where A = Al, Ga, In and B = As, Sb), Si-C and for the Al-Ti system. For the Al-rich part of the Al-Ti system, also a semi-schematic non-equilibrium ES diagram is constructed. Based on these diagrams, the synthesis conditions of various phases has been discussed.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012138
Author(s):  
I M Indrupskiy ◽  
P A Chageeva

Abstract Mathematical models of phase behavior are widely used to describe multiphase oil and gas-condensate systems during hydrocarbon recovery from natural petroleum reservoirs. Previously a non-equilibrium phase behavior model was proposed as an extension over generally adopted equilibrium models. It is based on relaxation of component chemical potentials difference between phases and provides accurate calculations in some typical situations when non-instantaneous changing of phase fractions and compositions in response to variations of pressure or total composition is to be considered. In this paper we present a thermodynamic analysis of the relaxation model. General equations of non-equilibrium thermodynamics for multiphase flows in porous media are considered, and reduced entropy balance equation for the relaxation process is obtained. Isotropic relaxation process is simulated for a real multicomponent hydrocarbon system with different values of characteristic relaxation time using the non-equilibrium model implemented in the PVT Designer module of the RFD tNavigator simulation software. The results are processed with a special algorithm implemented in Matlab to calculate graphs of the total entropy time derivative and its constituents in the entropy balance equation. It is shown that the constituents have different signs, and the greatest influence on the entropy is associated with the interphase flow of the major component of the mixture and the change of the total system volume in the isotropic process. The characteristic relaxation time affects the rate at which the entropy is approaching its maximum value.


Author(s):  
Valerio Lucarini ◽  
Grigorios A. Pavliotis ◽  
Niccolò Zagli

We study the response to perturbations in the thermodynamic limit of a network of coupled identical agents undergoing a stochastic evolution which, in general, describes non-equilibrium conditions. All systems are nudged towards the common centre of mass. We derive Kramers–Kronig relations and sum rules for the linear susceptibilities obtained through mean field Fokker–Planck equations and then propose corrections relevant for the macroscopic case, which incorporates in a self-consistent way the effect of the mutual interaction between the systems. Such an interaction creates a memory effect. We are able to derive conditions determining the occurrence of phase transitions specifically due to system-to-system interactions. Such phase transitions exist in the thermodynamic limit and are associated with the divergence of the linear response but are not accompanied by the divergence in the integrated autocorrelation time for a suitably defined observable. We clarify that such endogenous phase transitions are fundamentally different from other pathologies in the linear response that can be framed in the context of critical transitions. Finally, we show how our results can elucidate the properties of the Desai–Zwanzig model and of the Bonilla–Casado–Morillo model, which feature paradigmatic equilibrium and non-equilibrium phase transitions, respectively.


Sign in / Sign up

Export Citation Format

Share Document