Optimisation-based Transfer Alignment and Calibration Method for Inertial Measurement Vector Integration Matching

2016 ◽  
Vol 70 (3) ◽  
pp. 595-606 ◽  
Author(s):  
Lili Xie ◽  
Jiazhen Lu

The traditional Kalman filtering-based transfer alignment methods largely depend on prior information for initialisation. However, the initialisation process is hard to fulfil on a moving base. In this paper, a type of inertial measurement vector integration matching for optimisation-based transfer alignment and calibration is proposed to estimate the misalignment between the Master Inertial Navigation System (MINS) and Slave Inertial Navigation System (SINS), and main inertial sensor error parameters of SINS, including bias and scale factor error. In contrast to filter techniques, the proposed method has the capability of self-initialisation and provides a new idea to solve the alignment and calibration problem. No prior information is needed. Moreover, the integration time interval for the matching inertial measurement vector is selected by considering both the observation degree of inertial sensor error parameters and the noise effect. Simulation results demonstrate that the proposed method has faster convergence and is more accurate than Kalman filter techniques.

2012 ◽  
Vol 245 ◽  
pp. 323-329 ◽  
Author(s):  
Muhammad Ushaq ◽  
Jian Cheng Fang

Inertial navigation systems exhibit position errors that tend to grow with time in an unbounded mode. This degradation is due, in part, to errors in the initialization of the inertial measurement unit and inertial sensor imperfections such as accelerometer biases and gyroscope drifts. Mitigation to this growth and bounding the errors is to update the inertial navigation system periodically with external position (and/or velocity, attitude) fixes. The synergistic effect is obtained through external measurements updating the inertial navigation system using Kalman filter algorithm. It is a natural requirement that the inertial data and data from the external aids be combined in an optimal and efficient manner. In this paper an efficient method for integration of Strapdown Inertia Navigation System (SINS), Global Positioning System (GPS) and Doppler radar is presented using a centralized linear Kalman filter by treating vector measurements with uncorrelated errors as scalars. Two main advantages have been obtained with this improved scheme. First is the reduced computation time as the number of arithmetic computation required for processing a vector as successive scalar measurements is significantly less than the corresponding number of operations for vector measurement processing. Second advantage is the improved numerical accuracy as avoiding matrix inversion in the implementation of covariance equations improves the robustness of the covariance computations against round off errors.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Lijun Song ◽  
Zhongxing Duan ◽  
Bo He ◽  
Zhe Li

The centralized Kalman filter is always applied in the velocity and attitude matching of Transfer Alignment (TA). But the centralized Kalman has many disadvantages, such as large amount of calculation, poor real-time performance, and low reliability. In the paper, the federal Kalman filter (FKF) based on neural networks is used in the velocity and attitude matching of TA, the Kalman filter is adjusted by the neural networks in the two subfilters, the federal filter is used to fuse the information of the two subfilters, and the global suboptimal state estimation is obtained. The result of simulation shows that the federal Kalman filter based on neural networks is better in estimating the initial attitude misalignment angle of inertial navigation system (INS) when the system dynamic model and noise statistics characteristics of inertial navigation system are unclear, and the estimation error is smaller and the accuracy is higher.


2013 ◽  
Vol 332 ◽  
pp. 79-85
Author(s):  
Outamazirt Fariz ◽  
Muhammad Ushaq ◽  
Yan Lin ◽  
Fu Li

Strapdown Inertial Navigation Systems (SINS) displays position errors which grow with time in an unbounded manner. This degradation is due to the errors in the initialization of the inertial measurement unit, and inertial sensor imperfections such as accelerometer biases and gyroscope drifts. Improvement to this unbounded growth in errors can be made by updating the inertial navigation system solutions periodically with external position fixes, velocity fixes, attitude fixes or any combination of these fixes. The increased accuracy is obtained through external measurements updating inertial navigation system using Kalman filter algorithm. It is the basic requirement that the inertial data and data from the external aids be combined in an optimal and efficient manner. In this paper an efficient method for integration of Strapdown Inertial Navigation System (SINS), Global Positioning System (GPS) is presented using a centralized linear Kalman filter.


Sign in / Sign up

Export Citation Format

Share Document