Tissue section lifting for electron microscopy

Author(s):  
Adrian F. van Dellen

The morphologic pathologist may require information on the ultrastructure of a non-specific lesion seen under the light microscope before he can make a specific determination. Such lesions, when caused by infectious disease agents, may be sparsely distributed in any organ system. Tissue culture systems, too, may only have widely dispersed foci suitable for ultrastructural study. In these situations, when only a few, small foci in large tissue areas are useful for electron microscopy, it is advantageous to employ a methodology which rapidly selects a single tissue focus that is expected to yield beneficial ultrastructural data from amongst the surrounding tissue. This is in essence what "LIFTING" accomplishes. We have developed LIFTING to a high degree of accuracy and repeatability utilizing the Microlift (Fig 1), and have successfully applied it to tissue culture monolayers, histologic paraffin sections, and tissue blocks with large surface areas that had been initially fixed for either light or electron microscopy.

Author(s):  
Cecil E. Hall

The visualization of organic macromolecules such as proteins, nucleic acids, viruses and virus components has reached its high degree of effectiveness owing to refinements and reliability of instruments and to the invention of methods for enhancing the structure of these materials within the electron image. The latter techniques have been most important because what can be seen depends upon the molecular and atomic character of the object as modified which is rarely evident in the pristine material. Structure may thus be displayed by the arts of positive and negative staining, shadow casting, replication and other techniques. Enhancement of contrast, which delineates bounds of isolated macromolecules has been effected progressively over the years as illustrated in Figs. 1, 2, 3 and 4 by these methods. We now look to the future wondering what other visions are waiting to be seen. The instrument designers will need to exact from the arts of fabrication the performance that theory has prescribed as well as methods for phase and interference contrast with explorations of the potentialities of very high and very low voltages. Chemistry must play an increasingly important part in future progress by providing specific stain molecules of high visibility, substrates of vanishing “noise” level and means for preservation of molecular structures that usually exist in a solvated condition.


Author(s):  
Lee F. Ellis ◽  
Richard M. Van Frank ◽  
Walter J. Kleinschmidt

The extract from Penicillum stoliniferum, known as statolon, has been purified by density gradient centrifugation. These centrifuge fractions contained virus particles that are an interferon inducer in mice or in tissue culture. Highly purified preparations of these particles are difficult to enumerate by electron microscopy because of aggregation. Therefore a study of staining methods was undertaken.


Author(s):  
R. Stephens ◽  
G. Schidlovsky ◽  
S. Kuzmic ◽  
P. Gaudreau

The usual method of scraping or trypsinization to detach tissue culture cell sheets from their glass substrate for further pelletization and processing for electron microscopy introduces objectionable morphological alterations. It is also impossible under these conditions to study a particular area or individual cell which have been preselected by light microscopy in the living state.Several schemes which obviate centrifugation and allow the embedding of nondetached tissue culture cells have been proposed. However, they all preserve only a small part of the cell sheet and make use of inverted gelatin capsules which are in this case difficult to handle.We have evolved and used over a period of several years a technique which allows the embedding of a complete cell sheet growing at the inner surface of a tissue culture roller tube. Observation of the same cell by light microscopy in the living and embedded states followed by electron microscopy is performed conveniently.


Author(s):  
S. E. Miller

The techniques for detecting viruses are many and varied including FAT, ELISA, SPIRA, RPHA, SRH, TIA, ID, IEOP, GC (1); CF, CIE (2); Tzanck (3); EM, IEM (4); and molecular identification (5). This paper will deal with viral diagnosis by electron microscopy and will be organized from the point of view of the electron microscopist who is asked to look for an unknown agent--a consideration of the specimen and possible agents rather than from a virologist's view of comparing all the different viruses. The first step is to ascertain the specimen source and select the method of preparation, e. g. negative stain or embedment, and whether the sample should be precleared by centrifugation, concentrated, or inoculated into tissue culture. Also, knowing the type of specimen and patient symptoms will lend suggestions of possible agents and eliminate some viruses, e. g. Rotavirus will not be seen in brain, nor Rabies in stool, but preconceived notions should not prejudice the observer into missing an unlikely pathogen.


Author(s):  
Joseph M. Harb ◽  
James T. Casper ◽  
Vlcki Piaskowski

The application of tissue culture and the newer methodologies of direct cloning and colony formation of human tumor cells in soft agar hold promise as valuable modalities for a variety of diagnostic studies, which include morphological distinction between tumor types by electron microscopy (EM). We present here two cases in which cells in culture expressed distinct morphological features not apparent in the original biopsy specimen. Evaluation of the original biopsies by light and electron microscopy indicated both neoplasms to be undifferentiated sarcomas. Colonies of cells propagated in soft agar displayed features of rhabdomyoblasts in one case, and cultured cells of the second biopsy expressed features of Ewing's sarcoma.


2021 ◽  
Author(s):  
Z. Faidon Brotzakis ◽  
Thomas Lohr ◽  
Michele Vendruscolo

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a highly infectious disease that is severely affecting our society and welfare systems. In order to develop therapeutic interventions against this...


2011 ◽  
Vol 10 (01n02) ◽  
pp. 23-28
Author(s):  
RAVI BHATIA ◽  
V. PRASAD ◽  
M. REGHU

High-quality multiwall carbon nanotubes (MWNTs) were produced by a simple one-step technique. The production of MWNTs was based on thermal decomposition of the mixture of a liquid phase organic compound and ferrocene. High degree of alignment was noticed by scanning electron microscopy. The aspect ratio of as-synthesized MWNTs was quite high (more than 4500). Transmission electron microscopy analysis showed the presence of the catalytic iron nanorods at various lengths of MWNTs. Raman spectroscopy was used to know the quality of MWNTs. The ratio of intensity of the G-peak to the D-peak was very high which revealed high quality of MWNTs. Magnetotransport studies were carried out at low temperature and a negative MR was noticed.


1959 ◽  
Vol 5 (3) ◽  
pp. 405-410 ◽  
Author(s):  
Harrison Latta

The reaction of embryonic chick heart cells grown in tissue culture to specific guinea pig antiserum has been studied with electron microscopy. Heart fragments from chick embryos were cultured with a plasma clot. After being tested with antiserum or normal serum, they were fixed with buffered osmium tetroxide and embedded in butyl methacrylate before removal from the glass culture chamber. Thin cells found by phase microscopy to have reacted were sectioned in a plane parallel to the glass surface on which they had grown. The results confirm and extend observations made previously while the reactions were occurring. The plasma membrane, like that of the red cell, becomes disrupted or less resistant to trauma following the action of antiserum. The membranes of mitochondria and endoplasmic reticulum vesiculate and swell. Before nuclear shrinkage becomes prominent, the outer nuclear membrane separates over a large portion of the nuclear envelope and forms one or more large swollen blebs. Thus, the outer nuclear membrane shows a reactivity similar to endoplasmic reticulum. It is suggested that the various physical and chemical changes observed to follow the action of antibody and complement on fibroblasts may be explained by osmotic pressure differences between various cell components. Some basic similarities to the action of hemolytic agents on red cells are noted.


Sign in / Sign up

Export Citation Format

Share Document