Formation of paired helical filaments in Alzheimer's disease

Author(s):  
J. Metuzals ◽  
D. F. Clapin ◽  
V. Montpetit

Information on the conformation of paired helical filaments (PHF) and the neurofilamentous (NF) network is essential for an understanding of the mechanisms involved in the formation of the primary lesions of Alzheimer's disease (AD): tangles and plaques. The structural and chemical relationships between the NF and the PHF have to be clarified in order to discover the etiological factors of this disease. We are investigating by stereo electron microscopic and biochemical techniques frontal lobe biopsies from patients with AD and squid giant axon preparations. The helical nature of the lesion in AD is related to pathological alterations of basic properties of the nervous system due to the helical symmetry that exists at all hierarchic structural levels in the normal brain. Because of this helical symmetry of NF protein assemblies and PHF, the employment of structure reconstruction techniques to determine the conformation, particularly the handedness of these structures, is most promising. Figs. 1-3 are frontal lobe biopsies.

Author(s):  
J. Metuzals ◽  
V. Montpetit ◽  
D. F. Clapin ◽  
R. F. Nelson

Massive formations of paired helical filaments (PHF) found in neurons and in neurites of senile plaques are a characteristic diagnostic feature of Alzheimer's disease. Factors which initiate the formation of these highly regular structures are not known. However, their helical symmetry displays a basic principle of organization of the neurofilamentous network which is common to all neurons whether normal or pathological. The configuration of PHF assemblies may also be determined by principles common to all types of helical filaments of the cytoskeleton.


Nature ◽  
1983 ◽  
Vol 304 (5928) ◽  
pp. 727-730 ◽  
Author(s):  
Yasuo Ihara ◽  
Carmela Abraham ◽  
Dennis J. Selkoe

Author(s):  
D.F. Clapin ◽  
V.J.A. Montpetit

Alzheimer's disease is characterized by the accumulation of abnormal filamentous proteins. The most important of these are amyloid fibrils and paired helical filaments (PHF). PHF are located intraneuronally forming bundles called neurofibrillary tangles. The designation of these structures as "tangles" is appropriate at the light microscopic level. However, localized domains within individual tangles appear to demonstrate a regular spacing which may indicate a liquid crystalline phase. The purpose of this paper is to present a statistical geometric analysis of PHF packing.


Author(s):  
V.J.A. Montpetit ◽  
S. Dancea ◽  
S.W. French ◽  
D.F. Clapin

A continuing problem in Alzheimer research is the lack of a suitable animal model for the disease. The absence of neurofibrillary tangles of paired helical filaments is the most critical difference in the processes by which the central nervous system ages in most species other than man. However, restricting consideration to single phenomena, one may identify animal models for specific aspects of Alzheimer's disease. Abnormal fibers resembling PHF have been observed in dorsal root ganglia (DRG) neurons of rats in a study of chronic ethanol intoxication and spontaneously in aged rats. We present in this report evidence that PHF-like filaments occur in ethanol-treated rats of young age. In control animals lesions similar in some respects to our observations of cytoskeletal pathology in pyridoxine induced neurotoxicity were observed.Male Wistar BR rats (Charles River Labs) weighing 350 to 400 g, were implanted with a single gastrostomy cannula and infused with a liquid diet containing 30% of total calories as fat plus ethanol or isocaloric dextrose.


2020 ◽  
Vol 20 (12) ◽  
pp. 1059-1073 ◽  
Author(s):  
Ahmad Abu Turab Naqvi ◽  
Gulam Mustafa Hasan ◽  
Md. Imtaiyaz Hassan

Microtubule-associated protein tau is involved in the tubulin binding leading to microtubule stabilization in neuronal cells which is essential for stabilization of neuron cytoskeleton. The regulation of tau activity is accommodated by several kinases which phosphorylate tau protein on specific sites. In pathological conditions, abnormal activity of tau kinases such as glycogen synthase kinase-3 β (GSK3β), cyclin-dependent kinase 5 (CDK5), c-Jun N-terminal kinases (JNKs), extracellular signal-regulated kinase 1 and 2 (ERK1/2) and microtubule affinity regulating kinase (MARK) lead to tau hyperphosphorylation. Hyperphosphorylation of tau protein leads to aggregation of tau into paired helical filaments like structures which are major constituents of neurofibrillary tangles, a hallmark of Alzheimer’s disease. In this review, we discuss various tau protein kinases and their association with tau hyperphosphorylation. We also discuss various strategies and the advancements made in the area of Alzheimer's disease drug development by designing effective and specific inhibitors for such kinases using traditional in vitro/in vivo methods and state of the art in silico techniques.


Author(s):  
Zeba Mueed ◽  
Pankaj Kumar Rai ◽  
Mohammad A. Kamal ◽  
Nitesh Kumar Poddar

Alzheimer’s disease (AD), characterized by abnormally phosphorylated tau, paired helical filaments (PHFs), neurofibrillary tangles (NFTs), deregulated mammalian target of rapamycin (mTOR), Aβ deposits, is a multifactorial disease with sleep disorders being one of the causative agents. Therefore, we have reviewed the literature and have tried to decode the existence of positive feedback, reciprocal and a bidirectional relationship allying between sleep disturbances and AD. Much light has been thrown on the role of tau pathology and amyloid pathology in sleep pathology and its association with AD pathology. We have also discussed the role of melatonin in regulating sleep disorders and AD. The neuroprotective action of melatonin via inhibiting tau hyperphosphorylation and Aβ deposition has also been pondered upon. Moreover, astrocytes involvement in aggravating AD has also been highlighted in this review. Several therapeutic approaches aimed at improving both sleep disorders and AD have been duly discussed such as administration of antidepressants and antihistamines, immunotherapy, metal chelators, melatonin supplementation, light therapy and physical activity. Despite consistent efforts, the complete etiology concerning sleep disorder and AD is still unclear. Therefore, further research is needed to unravel the mechanism involved and also to develop strategies that may help in obstructing AD in its preclinical stage.


2021 ◽  
Vol 80 (4) ◽  
pp. 1439-1450
Author(s):  
Najla Jouini ◽  
Zakaria Saied ◽  
Samia Ben Sassi ◽  
Fatma Nebli ◽  
Taieb Messaoud ◽  
...  

Background: Iron plays an important role in maintaining cell survival, with normal iron trafficking known to be regulated by the ceruloplasmin-transferrin (Cp-Tf) antioxidant system. Disruption to this system is thought to be detrimental to normal brain function. Objective: To determine whether an imbalance of iron and the proteins involved in its metabolism (ceruloplasmin and transferrin) are linked to Alzheimer’s disease (AD) and to the expression of amyloid-beta (Aβ) peptide 1–42 (Aβ1–42), which is a major species of Aβ, and the most toxic. Methods: We evaluated the concentrations of iron, calcium, magnesium, and Aβ1–42 in the cerebrospinal fluid (CSF) of patients with AD and cognitively normal controls. Correlations between the components of the Cp-Tf antioxidant system in plasma were studied to determine the role of peripheral blood in the onset and/or development of AD. We used commercial ELISA immunoassays to measure Aβ1–42, immunoturbidimetry to quantify ceruloplasmin and transferrin, and colorimetry to quantify iron, calcium, and magnesium. Results: We found that the AD group had lower CSF concentrations of Aβ1–42 (p < 0.001) and calcium (p < 0.001), but a higher CSF concentration of iron (p < 0.001). Significantly lower plasma concentrations of ceruloplasmin (p = 0.003), transferrin (mean, p < 0.001), and iron (p < 0.001) were observed in the AD group than in cognitively normal adults. Moreover, we found a strong interdependence between most of these components. Conclusion: Iron dyshomeostasis has a crucial role in the onset of AD and/or its development. Correcting metal misdistribution is an appealing therapeutic strategy for AD.


Sign in / Sign up

Export Citation Format

Share Document