drg neurons
Recently Published Documents


TOTAL DOCUMENTS

775
(FIVE YEARS 226)

H-INDEX

67
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Yang Yang ◽  
Wei Zhou ◽  
Xiuqi Xu ◽  
Xianxiu Ge ◽  
Fei Wang ◽  
...  

Substance P contributes to the pathogenesis of pain by acting on NK-1R, specialized sensory neurons that detect noxious stimuli. Aprepitant, an antagonist of NK-1R, is widely used to treat chemotherapy-induced nausea and vomiting. In this study, we used LPS-stimulated BV-2 microglia cell line and animal models of inflammatory pain to explore the analgesic effect of aprepitant on inflammatory pain and its underlying mechanism. The excitability of DRG neurons were measured using whole-cell patch-clamp recordings. The behavioral tests were measured and the morphological changes on inflamed paw sections were determined by HE staining. Changes in the expressions of cytokine were measured by using real-time quantitative PCR analysis and ELISA method. Immunofluorescence and western blotting were used to detect the microglia activation and MAPK. Aprepitant treatment significantly inhibited the excitability of DRG neurons. The pain behavior and the paw tissues inflammatory damage were significantly relived after the administration of aprepitant compared to formalin group. Aprepitant significantly suppressed the activation of microglia, phosphorylation of JNK and p38 MAPK, as well as the mRNA and protein expressions of MCP-1, TNF-α, IL-6, and IL-1β, in vivo and in vitro. The LPS-induced over-translocation into nucleus of NF-κBp65 was down-regulated following aprepitant treatment in BV-2 cells. The present study suggests that aprepitant attenuates inflammatory pain in mice via suppressing the phosphorylation of JNK and p38, and inhibiting the NF-κB signaling pathway.


2022 ◽  
Author(s):  
Mona Dastgheib ◽  
Seyed Vahid Shetab-Boushehri ◽  
Maryam Baeeri ◽  
Mahdi Gholami ◽  
Mohammad Yahya Karimi ◽  
...  

Abstract Diabetic neuropathy (DN) is the most challenging microvascular complication of diabetes and there is no suitable treatment for it, so the development of new agents to relieve DN is urgently needed. Since oxidative stress and inflammation play an essential role in the development of DN, clearance of these factors are good strategies for the treatment of this disease. According to key role of cyclic adenosine monophosphate (cAMP) in the regulation of oxidative stress and inflammatory pathways, it seems that phosphodiesterase inhibitors (PDEIs) can be as novel drug targets for improving DN through enhancement of cAMP level. The aim of this study was to evaluate the effects of rolipram, a selective PDE4 inhibitor, and pentoxifylline, a general PDE inhibitor on experimental model of DN and also to determine the possible mechanisms involved in the effectiveness of these agents. We investigated the effects of rolipram (1mg/kg) and pentoxifylline (100 mg/kg) and also combination of rolipram (0.5 mg/kg) and pentoxifylline (50 mg/kg), orally for five weeks in rats that became diabetic by STZ (55 mg/kg, i.p.). After treatments, motor function was evaluated by open-field test, then rats were anesthetized and dorsal root ganglion (DRG) neurons isolated. Next, oxidative stress biomarkers and inflammatory factors were assessed by biochemical and ELISA methods, and RT-PCR analysis in DRG neurons. Rolipram and/or pentoxifylline treatment significantly attenuated DN – induced motor function deficiency by modulating distance moved and velocity. Rolipram and/or pentoxifylline treatment dramatically increased the cAMP level, as well as suppressed DN – induced oxidative stress which was associated with decrease in LPO and ROS and increase in TAC, total thiol, CAT and SOD in DRG neurons. On the other hand, the level of inflammatory factors (TNF-α, NF-kB and COX2) significantly decreased following rolipram and/or pentoxifylline administration.The maximum effectiveness was with rolipram and/or pentoxifylline combination on mentioned factors.These findings provide novel experimental evidence for further clinical investigations on rolipram and pentoxifylline combination for the treatment of DN.


2022 ◽  
Author(s):  
Chi Zhang ◽  
Ming-Wen Hu ◽  
Shaoqiu He ◽  
Xuewei Wang ◽  
Xu Cao ◽  
...  

Functionally distinct subtypes/clusters of dorsal root ganglion (DRG) neurons, which differ in soma size and neurochemical properties, may play different roles in nerve regeneration and pain. However, details about transcriptomic changes in different neuronal subtypes under maladaptive neuropathic pain conditions remain unclear. Chronic constriction injury (CCI) of the sciatic nerve represents a well-established model of neuropathic pain that mimics the etiology of clinical conditions. Therefore, we conducted single-cell RNA-sequencing (scRNA-seq) to characterize subtype-specific perturbations of transcriptomes in lumbar DRG neurons 7 days after sciatic CCI. By using Pirt-EGFPf mice that selectively express enhanced green fluorescent protein in DRG neurons, we established a highly efficient purification process to enrich neurons for scRNA-seq. We observed a loss of marker genes in injured neurons of 12 standard neuronal clusters, and the emergence of four prominent CCI-induced clusters at this peak-maintenance phase of neuropathic pain. Importantly, a portion of injured neurons from a subset of the 12 standard clusters (NP1, PEP5, NF1, and NF2) were spared from injury-induced identity loss, suggesting subtype-specific transcriptomic changes in injured neurons. Moreover, uninjured neurons, which are necessary for mediating the evoked pain, also demonstrated subtype-specific transcriptomic perturbations in these clusters, but not others. Notably, male and female mice showed differential transcriptomic changes in multiple neuronal clusters after CCI, suggesting transcriptomic sexual dimorphism in primary sensory neurons after nerve injury. Collectively, these findings may contribute to the identification of new target genes and development of DRG neuron subtype-specific therapies for optimizing neuropathic pain treatment and nerve regeneration.


2021 ◽  
Author(s):  
Min Kwon ◽  
Yeojin Seo ◽  
Hana Cho ◽  
Jihye Choi ◽  
Hyung Soon Kim ◽  
...  

Preconditioning peripheral nerve injury enhances axonal regeneration of dorsal root ganglia (DRG) neurons in part by driving pro-regenerative perineuronal macrophage activation. How these regeneration-associated macrophages influence the neuronal capacity of axon regeneration remains elusive. The present study reports that oncomodulin (ONCM) is an effector molecule derived from the regeneration-associated macrophages. ONCM was highly upregulated in DRG macrophages following preconditioning injury and necessary for the preconditioning-induced neurite outgrowth. ONCM-deficient macrophages failed to generate neurite outgrowth activity of the conditioned medium in the in vitro model of neuron-macrophage interaction. CCL2/CCR2 signaling is an upstream regulator of ONCM since the ONCM upregulation was dependent on CCR2 and CCL2 overexpression-mediated conditioning effects were attenuated in ONCM-deficient mice. Direct application of ONCM potently increased neurite outgrowth in cultured DRG neurons by activating a distinct gene set, particularly neuropeptide-related genes. AAV-mediated overexpression of ONCM construct with the signal sequence increased neuronal secretion of ONCM and enhanced neurite outgrowth in an autocrine manner. For a clinically relevant approach, we developed a nanogel-mediated system for localized delivery of recombinant ONCM to DRG tissue. Electrostatic encapsulation of ONCM by a reducible epsilon-poly(L-lysine)-nanogel (REPL-NG) resulted in a slow release of ONCM allowing sustained bioactivity. Intraganglionic injection of REPL-NG/ONCM complex achieved a remarkable long-range axonal regeneration beyond spinal cord lesion, surpassing the extent expected from the preconditioning effects. The NG-mediated ONCM delivery could be exploited as a therapeutic strategy for promoting sensory axon regeneration following spinal cord injury.


2021 ◽  
Vol 23 (1) ◽  
pp. 107
Author(s):  
Matthias Vanneste ◽  
Marie Mulier ◽  
Ana Cristina Nogueira Freitas ◽  
Nele Van Ranst ◽  
Axelle Kerstens ◽  
...  

The cation channel TRPM3 is activated by heat and the neurosteroid pregnenolone sulfate. TRPM3 is expressed on sensory neurons innervating the skin, where together with TRPV1 and TRPA1, it functions as one of three redundant sensors of acute heat. Moreover, functional upregulation of TRPM3 during inflammation contributes to heat hyperalgesia. The role of TRPM3 in sensory neurons innervating internal organs such as the bladder is currently unclear. Here, using retrograde labeling and single-molecule fluorescent RNA in situ hybridization, we demonstrate expression of mRNA encoding TRPM3 in a large subset of dorsal root ganglion (DRG) neurons innervating the mouse bladder, and confirm TRPM3 channel functionality in these neurons using Fura-2-based calcium imaging. After induction of cystitis by injection of cyclophosphamide, we observed a robust increase of the functional responses to agonists of TRPM3, TRPV1, and TRPA1 in bladder-innervating DRG neurons. Cystometry and voided spot analysis in control and cyclophosphamide-treated animals did not reveal differences between wild type and TRPM3-deficient mice, indicating that TRPM3 is not critical for normal voiding. We conclude that TRPM3 is functionally expressed in a large proportion of sensory bladder afferent, but its role in bladder sensation remains to be established.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiangyu Wang ◽  
Boxuan Zhang ◽  
Xuedong Li ◽  
Xingang Liu ◽  
Songsong Wang ◽  
...  

Gastrodin (GAS) is the main bioactive ingredient of Gastrodia, a famous Chinese herbal medicine widely used as an analgesic, but the underlying analgesic mechanism is still unclear. In this study, we first observed the effects of GAS on the vincristine-induced peripheral neuropathic pain by alleviating the mechanical and thermal hyperalgesia. Further studies showed that GAS could inhibit the current density of NaV1.7 and NaV1.8 channels and accelerate the inactivation process of NaV1.7 and NaV1.8 channel, thereby inhibiting the hyperexcitability of neurons. Additionally, GAS could significantly reduce the over-expression of NaV1.7 and NaV1.8 on DRG neurons from vincristine-treated rats according to the analysis of Western blot and immunofluorescence results. Moreover, based on the molecular docking and molecular dynamic simulation, the binding free energies of the constructed systems were calculated, and the binding sites of GAS on the sodium channels (NaV1.7 and NaV1.8) were preliminarily determined. This study has shown that modulation of NaV1.7 and NaV1.8 sodium channels by GAS contributing to the alleviation of vincristine-induced peripheral neuropathic pain, thus expanding the understanding of complex action of GAS as a neuromodulator.


Author(s):  
JUN-JIE TIAN ◽  
YING-YING ZHANG ◽  
ZHAO-YANG TAN ◽  
NAN CAO ◽  
ZU-WEI QU ◽  
...  

The aim of the study was to clarify the effect of melatonin on neuropathic pain by N-type calcium channel (Cav2.2) inhibition in dorsal root ganglion (DRG) neurons after spared nerve injury (SNI) surgery. Immunofluorescence was used to identify the co-expression of Cav2.2 and the MT2 receptor and detect the changes in Cav2.2 expression in DRG neurons. Western-blot was also performed to detect the expression of Cav2.2 in DRG neurons. The action potential and current of Cav2.2 channels in DRG neurons were detected using whole-cell patch clamp analysis. Behavioral studies were conducted using thermal stimulation and acetone after melatonin was injected intraperitoneally. The results revealed that Cav2.2 and the MT2 receptor were co-expressed in medium and small sized DRG neurons, and the intensity of Cav2.2 increased after SNI. Injection of melatonin activated the MT2 receptor and relieved nociceptive pain through decreased the Cav2.2 expression and current in DRG neurons. Melatonin can significantly decrease the increase in Cav2.2 current density and excitability after SNI. In addition, the Cav2.2 activation curve shifted to the left after SNI, but there was no change in inactivation. 10 μM melatonin significantly inhibited the excitability of DRG neurons and Cav2.2 current, the inactivation curve of Cav2.2 current shifted significantly to the left. However, the MT2 receptor antagonist 4-P-PDOT reversed the inhibition of melatonin on Cav2.2 current. We conclude that melatonin inhibits the increased Cav2.2 expression and current; on the other hand, it reduces the excitability of DRG neurons after SNI surgery via the MT2 receptor pathway.


2021 ◽  
Author(s):  
Menghon Cheah ◽  
Yuyan Cheng ◽  
Veselina Petrova ◽  
Anda Cimpean ◽  
Pavla Jendelova ◽  
...  

The peripheral branch of sensory dorsal root ganglion (DRG) neurons regenerates readily after injury unlike their central branch in the spinal cord. However extensive regeneration and reconnection of sensory axons in the spinal cord can be driven by the expression of α9 integrin and its activator kindlin-1(α9k1), which enable axons to interact with tenascin-C. To elucidate the mechanisms and downstream pathways affected by activated integrin expression and central regeneration, we conducted transcriptomic analyses of DRG sensory neurons transduced with α9k1, and controls, with and without axotomy of the central branch. Expression of α9k1 without the central axotomy led to upregulation of a known PNS regeneration program, including many genes associated with peripheral nerve regeneration. Coupling α9k1 treatment with dorsal root axotomy led to extensive central axonal regeneration and caused expression of a distinctive CNS regeneration program, including genes associated with ubiquitination, autophagy, endoplasmic reticulum, trafficking, and signalling. Pharmacological inhibition of these processes blocked the regeneration of axons from DRGs and human iPS-derived sensory neurons, validating their causal contributions. This CNS regeneration-associated program showed little correlation with either embryonic development or PNS regeneration programs. Potential transcriptional drivers of this CNS program coupled to regeneration include Mef2a, Runx3, E2f4, Tfeb, Yy1. Signalling from integrins primes sensory neurons for regeneration, but their axon growth in the CNS is associated with a distinctive program that differs from that involved in PNS regeneration.


2021 ◽  
Vol 15 ◽  
Author(s):  
Moeko Kudo ◽  
Sidikejiang Wupuer ◽  
Shinji Kubota ◽  
Kazuhiko Seki

The aim of this study was to elucidate the size and distribution of dorsal root ganglion (DRG) neurons in non-human primates and to compare them with those of rodent DRG neurons. By measuring the size of NeuN-, NF200-, and peripherin-positive DRG neurons in the lumbar spinal cord of rats and marmosets, we found that the cell size distribution pattern was comparable in both species, although DRG neurons in marmosets were larger than those of rodents. This is the first demonstration that DRG neurons in marmosets have a bimodal size distribution, which has been well established in rodents and humans.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Minh Q Nguyen ◽  
Lars J von Buchholtz ◽  
Ashlie N Reker ◽  
Nicholas JP Ryba ◽  
Steve Davidson

Somatosensory neurons with cell bodies in the dorsal root ganglia (DRG) project to the skin, muscles, bones, and viscera to detect touch and temperature as well as to mediate proprioception and many types of interoception. In addition, the somatosensory system conveys the clinically relevant noxious sensations of pain and itch. Here, we used single nuclear transcriptomics to characterize transcriptomic classes of human DRG neurons that detect these diverse types of stimuli. Notably, multiple types of human DRG neurons have transcriptomic features that resemble their mouse counterparts although expression of genes considered important for sensory function often differed between species. More unexpectedly, we identified several transcriptomic classes with no clear equivalent in the other species. This dataset should serve as a valuable resource for the community, for example as means of focusing translational efforts on molecules with conserved expression across species.


Sign in / Sign up

Export Citation Format

Share Document