Limits for high-resolution electron microscopy of inorganic materials?

Author(s):  
David J. Smith

The era of atomic-resolution electron microscopy has finally arrived. In virtually all inorganic materials, including oxides, metals, semiconductors and ceramics, it is possible to image individual atomic columns in low-index zone-axis projections. A whole host of important materials’ problems involving defects and departures from nonstoichiometry on the atomic scale are waiting to be tackled by the new generation of intermediate voltage (300-400keV) electron microscopes. In this review, some existing problems and limitations associated with imaging inorganic materials are briefly discussed. The more immediate problems encountered with organic and biological materials are considered elsewhere.Microscope resolution. It is less than a decade since the state-of-the-art, commercially available TEM was a 200kV instrument with a spherical aberration coefficient of 1.2mm, and an interpretable resolution limit (ie. first zero crossover of the contrast transfer function) of 2.5A.

Author(s):  
J. A. Hugo ◽  
V. A. Phillips

A continuing problem in high resolution electron microscopy is that the level of detail visible to the microscopist while he is taking a picture is inferior to that obtainable by the microscope, readily readable on a photographic emulsion and visible in an enlargement made from the plate. Line resolutions, of 2Å or better are now achievable with top of the line 100kv microscopes. Taking the resolution of the human eye as 0.2mm, this indicates a need for a direct viewing magnification of at least one million. However, 0.2mm refers to optimum viewing conditions in daylight or the equivalent, and certainly does not apply to a (colored) image of low contrast and illumination level viewed on a fluorescent screen through a glass window by the dark-adapted eye. Experience indicates that an additional factor of 5 to 10 magnification is needed in order to view lattice images with line spacings of 2 to 4Å. Fortunately this is provided by the normal viewing telescope supplied with most electron microscopes.


Author(s):  
J.L. Batstone ◽  
J.M. Gibson ◽  
Alice.E. White ◽  
K.T. Short

High resolution electron microscopy (HREM) is a powerful tool for the determination of interface atomic structure. With the previous generation of HREM's of point-to-point resolution (rpp) >2.5Å, imaging of semiconductors in only <110> directions was possible. Useful imaging of other important zone axes became available with the advent of high voltage, high resolution microscopes with rpp <1.8Å, leading to a study of the NiSi2 interface. More recently, it was shown that images in <100>, <111> and <112> directions are easily obtainable from Si in the new medium voltage electron microscopes. We report here the examination of the important Si/Si02 interface with the use of a JEOL 4000EX HREM with rpp <1.8Å, in a <100> orientation. This represents a true structural image of this interface.


1986 ◽  
Vol 77 ◽  
Author(s):  
Mary Beth Stearns ◽  
Amanda K. Petford-Long ◽  
C.-H. Chang ◽  
D. G. Stearns ◽  
N. M. Ceglio ◽  
...  

ABSTRACTThe technique of high resolution electron microscopy has been used to examine the structure of several multilayer systems (MLS) on an atomic scale. Mo/Si multilayers, in use in a number of x-ray optical element applications, and Mo/Si multilayers, of interest because of their magnetic properties, have been imaged in cross-section. Layer thicknesses, flatness and smoothness have been analysed: the layer width can vary by up to 0.6nm from the average value, and the layer flatness depends on the quality of the substrate surface for amorphous MLS, and on the details of the crystalline growth for the crystalline materials. The degree of crystallinity and the crystal orientation within the layers have also been investigated. In both cases, the high-Z layers are predominantly crystalline and the Si layers appear amorphous. Amorphous interfacial regions are visible between the Mo and Si layers, and crystalline cobalt suicide interfacial regions between the Co and Si layers. Using the structural measurements obtained from the HREM results, theoretical x-ray reflectivity behaviour has been calculated. It fits the experimental data very well.


1980 ◽  
Vol 2 ◽  
Author(s):  
Fernando A. Ponce

ABSTRACTThe structure of the silicon-sapphire interface of CVD silicon on a (1102) sapphire substrate has been studied in crøss section by high resolution transmission electron microscopy. Multibeam images of the interface region have been obtained where both the silicon and sapphire lattices are directly resolved. The interface is observed to be planar and abrupt to the instrument resolution limit of 3 Å. No interfacial phase is evident. Defects are inhomogeneously distributed at the interface: relatively defect-free regions are observed in the silicon layer in addition to regions with high concentration of defects.


1989 ◽  
Vol 159 ◽  
Author(s):  
A. Catana ◽  
M. Heintze ◽  
P.E. Schmid ◽  
P. Stadelmann

ABSTRACTHigh Resolution Electron Microscopy (HREM) was used to study microstructural changes related to the CoSi/Si-CoSi/CoSi2/Si-CoSi2/Si transformations. CoSi is found to grow epitaxially on Si with [111]Si // [111]CoSi and < 110 >Si // < 112 >CoSi. Two CoSi non-equivalent orientations (rotated by 180° around the substrate normal) can occur in this plane. They can be clearly distinguished by HRTEM on cross-sections ( electron beam along [110]Si). At about 500°C CoSi transforms to CoSi2. Experimental results show that the type B orientation relationship satisfying [110]Si // [112]CoSi is preserved after the initial stage of CoSi2 formation. At this stage an epitaxial CoSi/CoSi2/Si(111) system is obtained. The atomic scale investigation of the CoSi2/Si interface shows that a 7-fold coordination of the cobalt atoms is observed in both type A and type B epitaxies.


1990 ◽  
Vol 202 ◽  
Author(s):  
A. Catana ◽  
P.E. Schmid

ABSTRACTHigh Resolution Electron Microscopy (HREM) and image calculations are combined to study microstructural changes related to the CoSi/Si-CoSi/CoSi2/Si-CoSi2/Si transformations. The samples are prepared by UHV e-beam evaporation of Co layers (2 nm) followed by annealing at 300°C or 400°C. Cross-sectional observations at an atomic scale show that the silicidation of Co at the lower temperature yields epitaxial CoSi/Si domains such that [111]Si // [111]CoSi and <110>Si // <112>CoSi. At about 400°C CoSi2 nucleates at the CoSi/Si interface. During the early stages of this chemical reaction, an epitaxial CoSi/CoSi2/Si system is observed. The predominant orientation is such that (021) CoSi planes are parallel to (220) CoSi2 planes, the CoSi2/Si interface being of type B. The growth of CoSi2 is shown to proceed at the expense of both CoSi and Si.


1994 ◽  
Vol 332 ◽  
Author(s):  
David J. Smith ◽  
M.R. Mccartney

ABSTRACTStructural information on the atomic scale is readily accessible from thin samples using the technique of high-resolution electron microscopy. Electron micrographs recorded under well-defined operating conditions can be directly interpreted in terms of atomic arrangements around defects of interest such as dislocations and interfaces. Digital image recording with slow-scan CCD cameras and quantitative comparisons with image simulations based on structural models are starting to lead to improved accuracy and reliability in structure determinations. Techniques based upon holographic methods are utilizing the superior illumination coherence of the field emission electron source to enhance resolution beyond the conventional extended Scherzer limit. Innovative methods for combining image and diffraction pattern information are also leading to improved levels of resolution for periodic objects. Care is needed to ensure that electron irradiation damage and surface cleanliness do not impose unnecessary restrictions on the details that can be extracted from recorded micrographs. It is proposed that the complex wavefunction emerging from the exit-surface of the sample should be considered as a basis for comparing the differences between experimental micrographs and image simulations.


Author(s):  
M. R. McCartney ◽  
David J. Smith

The examination of surfaces requires not only that they be free of adsorbed layers but the environment of the sample must also be maintained at high vacuum so that the surfaces remain clean. The possibility of resolving surface structures with atomic resolution has provided the motivation for optimizing intermediate and high voltage electron microscopes for this particular application. Electron microscopy offers a variety of techniques which have the capability of achieving atomic level detail of surfaces including plan-view imaging, REM and profile imaging. Operation at higher voltages permits reasonable pole piece dimensions thereby providing space for in situ studies yet still compatible with high resolution. Moreover, video systems can be attached which permit observation and recording of dynamic phenomena without compromising microscope performance.


Sign in / Sign up

Export Citation Format

Share Document