The EISI Index: A Search/ Match Tool for Electron Diffraction Phase Analysis

Author(s):  
Ron Anderson ◽  
M. J. Carr ◽  
V. L. Himes ◽  
A. D. Mighell

The identification of unknown phases using diffraction data and the JCPDS-ICDD Powder Diffraction File (PDF)[1] is a three-step process. First, the Search step rapidly screens the entire PDF to produce a list of candidate solutions that correspond to the unknown phase’s d-spacings and chemistry. Second, the Match step examines closely every aspect of each phase in the candidate list, vs. the unknown, to make the identification. Third, the Decision step: does the solution found make crystal-chemical-thermodynamic sense? A hindrance to the identification process for electron diffraction applications is that the PDF consists of X-ray powder diffraction data. There are two problems: First, while X-ray diffraction intensity data compares well to electron diffraction intensities for randomly-oriented, small-grained specimens, in the main, intensities from the two methods are not the same. The differing intensities exacerbate the problem of unknown phase searching for electron diffraction because X-ray derived Search/Matching methods rely heavily on intensity information.

Author(s):  
Michel Fleck ◽  
Ekkehart Tillmanns ◽  
Ladislav Bohatý ◽  
Peter Held

AbstractThe crystal structures of eight different L-malates have been determined and refined from single-crystal X-ray diffraction data. The compounds are the monoclinic (space groupIn addition, for all the compounds, powder diffraction data were collected, analysed and submitted to the powder diffraction file (PDF).


1986 ◽  
Vol 1 (4) ◽  
pp. 330-330 ◽  
Author(s):  
Joan Fitzpatrick

Florencite-(Nd) [(Nd,Ce)Al3(PO4)2(OH)6], was first described by Milton and Bastron (1971) from fracture surfaces in weathered cherts of the Franciscan Complex, south of Sausalito in Marin County, California. Florencite-(Nd) occurred there as a moderate-brown pulverulent earthy material; individual crystals were not discernible under microscopic examination. A semi-quantitative spectrographic analysis showed the presence of Nd (3 wt. %) and Ce (0.5 wt. %). No powder data for florencite-(Nd) exists in the current powder diffraction file.


1997 ◽  
Vol 12 (2) ◽  
pp. 81-86 ◽  
Author(s):  
J. M. S. Skakle ◽  
L. P. Moroni ◽  
F. P. Glasser

The X-ray powder diffraction patterns for two new synthetic calcium uranium (VI) silicate hydrate phases are reported. Ca1.5U6(OH)7O16·7H2O is orthorhombic, space group P*a*, with unit cell a=13.8949(14), b=12.0776(12), c=15.228(3) Å. The structure appears to be related to that of becquerelite. Ca2(UO2)2(Si2O5)3·10H2O was also indexed on an orthorhombic unit cell, a=12.075(3), b=15.406(6), c=26.043(6) Å. The Powder Diffraction File coverage of uranium-containing minerals which could, on the basis of their chemical formula, form in U-containing cements is also reviewed.


2008 ◽  
Vol 23 (3) ◽  
pp. 251-254 ◽  
Author(s):  
B. Grushko ◽  
S. Balanetskyy

A ternary phase was revealed in Al-Ni-Re in a small compositional range around Al73.5Ni18.5Re8. Using powder X-ray diffraction and electron diffraction, it was found to have an orthorhombic structure with a=10.048(3) Å, b=15.423(8) Å, and c=8.367(3) Å.


2021 ◽  
pp. 1-3
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of varenicline hydrogen tartrate Form B (Chantix®) has been refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Varenicline hydrogen tartrate Form B crystallizes in space group P212121 (#19) with a = 7.07616(2), b = 7.78357(2), c = 29.86149(7) Å, V = 1644.706(6) Å3, and Z = 4. The hydrogen bonds were identified and quantified. Hydrogen bonds link the cations and anions in zig-zag chains along the b-axis. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


1982 ◽  
Vol 26 ◽  
pp. 87-88 ◽  
Author(s):  
Winnie Wong-Ng ◽  
Mark Holomany ◽  
W. Frank McClune ◽  
Camden R. Hubbard

The Powder Diffraction File (PDF), published by the JCPDS-International Centre for Diffraction Data, is one of the most widely used scientific data bases. It currently consists of about 40,000 x-ray diffraction patterns, organized into 32 sets and 5 subfiles: metals and alloys, minerals, common phases, forensic patterns, and those from the National Bureau of Standards (NBS), New patterns are being added to the PDF at a rate of 2,000 patterns per year. The sources of these patterns are the literature, private contributions, grants in-aid projects, and the JCPDS Associateship at the NBS.


1988 ◽  
Vol 32 ◽  
pp. 561-567
Author(s):  
D. B. Sullenger ◽  
J. S. Cantrell ◽  
T. A. Beiter ◽  
D. W. Tomlin

For several years we have prepared and submitted a variety of quality powder x-ray diffraction patterns to the International Centre for Diffraction Data (ICDD) for inclusion as reference standards in their Powder Diffraction File (PDF). Patterns submitted and/or currently under development include metal hydrides (inorganics), flavanoids and related compounds (organics), organic compounds involved in pollution (e.g., dioxins), explosives (organics and metal organics) and glass-ceramic phases (inorganics).


1996 ◽  
Vol 11 (1) ◽  
pp. 26-27 ◽  
Author(s):  
Irena Georgieva ◽  
Ivan Ivanov ◽  
Ognyan Petrov

A new compound—Ba3MnSi2O8 in the system BaO–MnO–SiO2 was synthesized and studied by powder X-ray diffraction. The compound is hexagonal, space group—P6/mmm, a=5.67077 Å, c=7.30529 Å, Z=1, Dx=5.353. The obtained powder X-ray diffractometry (XRD) data were interpreted by the Powder Data Interpretation Package.


2015 ◽  
Vol 30 (3) ◽  
pp. 293-293 ◽  
Author(s):  
Qing Wang ◽  
Ying Xiao ◽  
Jia Wei He ◽  
Hui Li

X-ray powder diffraction data for 3,3-dichloro-1-(4-nitrophenyl)-2-piperidinone, C11H10Cl2N2O3, are reported [a = 11.088(4) Å, b = 11.594(5) Å, c = 12.689(3) Å, α = 118.456(1)°, β = 100.320(3)°, γ = 107.763(3)°, V = 1259.27 Å3, Z = 4 and space group P-1 ]. All measured lines were indexed and are consistent with the P-1 space group. No detectable impurities were observed.


1997 ◽  
Vol 53 (6) ◽  
pp. 861-869 ◽  
Author(s):  
C. D. Ling ◽  
J. G. Thompson ◽  
S. Schmid ◽  
D. J. Cookson ◽  
R. L. Withers

The structures of the layered intergrowth phases SbIIISb^{\rm V}_xAl-xTiO6 (x \simeq 0, A = Ta, Nb) have been refined by the Rietveld method, using X-ray diffraction data obtained using a synchrotron source. The starting models for these structures were derived from those of Sb^{\rm III}_3Sb^{\rm V}_xA 3−xTiO14 (x = 1.26, A = Ta and x = 0.89, A = Nb), previously solved by single-crystal X-ray diffraction. There were no significant differences between the derived models and the final structures, validating the approach used to obtain the models and confirming that the n = 1 and n = 3 members of the family, Sb^{\rm III}_nSb^{\rm V}_xA n−xTiO4n+2 are part of a structurally homologous series.


Sign in / Sign up

Export Citation Format

Share Document