Approaches for TEM imaging of cavitation in toughened nylon

Author(s):  
Barbara A. Wood

A controversial topic in the study of structure-property relationships of toughened polymer systems is the internal cavitation of toughener particles resulting from damage on impact or tensile deformation.Detailed observations of the influence of morphological characteristics such as particle size distribution on deformation mechanisms such as shear yield and cavitation could provide valuable guidance for selection of processing conditions, but TEM observation of damaged zones presents some experimental difficulties.Previously published TEM images of impact fractured toughened nylon show holes but contrast between matrix and toughener is lacking; other systems investigated have clearly shown cavitated impact modifier particles. In rubber toughened nylon, the physical characteristics of cavitated material differ from undamaged material to the extent that sectioning of heavily damaged regions by cryoultramicrotomy with a diamond knife results in sections of greater than optimum thickness (Figure 1). The detailed morphology is obscured despite selective staining of the rubber phase using the ruthenium trichloride route to ruthenium tetroxide.

Author(s):  
J. Petermann ◽  
G. Broza ◽  
U. Rieck ◽  
A. Jaballah ◽  
A. Kawaguchi

Oriented overgrowth of polymer materials onto ionic crystals is well known and recently it was demonstrated that this epitaxial crystallisation can also occur in polymer/polymer systems, under certain conditions. The morphologies and the resulting physical properties of such systems will be presented, especially the influence of epitaxial interfaces on the adhesion of polymer laminates and the mechanical properties of epitaxially crystallized sandwiched layers.Materials used were polyethylene, PE, Lupolen 6021 DX (HDPE) and 1810 D (LDPE) from BASF AG; polypropylene, PP, (PPN) provided by Höchst AG and polybutene-1, PB-1, Vestolen BT from Chemische Werke Hüls. Thin oriented films were prepared according to the method of Petermann and Gohil, by winding up two different polymer films from two separately heated glass-plates simultaneously with the help of a motor driven cylinder. One double layer was used for TEM investigations, while about 1000 sandwiched layers were taken for mechanical tests.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2055
Author(s):  
Marta Bystrzanowska ◽  
Marek Tobiszewski

In this review, we present the applications of chemometric techniques for green and sustainable chemistry. The techniques, such as cluster analysis, principal component analysis, artificial neural networks, and multivariate ranking techniques, are applied for dealing with missing data, grouping or classification purposes, selection of green material, or processes. The areas of application are mainly finding sustainable solutions in terms of solvents, reagents, processes, or conditions of processes. Another important area is filling the data gaps in datasets to more fully characterize sustainable options. It is significant as many experiments are avoided, and the results are obtained with good approximation. Multivariate statistics are tools that support the application of quantitative structure–property relationships, a widely applied technique in green chemistry.


2013 ◽  
Vol 48 (24) ◽  
pp. 8588-8595 ◽  
Author(s):  
Yelena Nash ◽  
Tyler L. Nash ◽  
Brandon Henderson ◽  
El-Shazly M. Duraia ◽  
Clois E. Powell ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5899
Author(s):  
Mario Messiha ◽  
Andreas Frank ◽  
Jan Heimink ◽  
Florian Arbeiter ◽  
Gerald Pinter

Thermoplastic materials have established a reputation for long-term reliability in low-pressure gas and water distribution pipe systems. However, occasional Slow Crack Growth (SCG) and Rapid Crack Propagation (RCP) failures still occur. SCG may initiate only a small leak, but it has the potential to trigger RCP, which is much rarer but more catastrophic and destructive. RCP can create a long, straight or meandering axial crack path at speeds of up to hundreds of meters per second. It is driven by internal (residual) and external (pressure) loads and resisted by molecular and morphological characteristics of the polymer. The safe installation and operation of a pipe throughout its service lifetime therefore requires knowledge of its resistance to RCP, particularly when using new materials. In this context, the RCP resistance of five different polyamide (PA) 12 grades was investigated using the ISO 13477 Small-Scale Steady State (S4) test. Since these grades differed not only in molecular weight but also in their use of additives (impact modifiers and pigments), structure-property relationships could be deduced from S4 test results. A new method is proposed for correlating these results more efficiently to evaluate each grade using the crack arrest lengths from individual S4 test specimens.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 419 ◽  
Author(s):  
Jingyi Liu ◽  
Changling Du ◽  
Henry T. Beaman ◽  
Mary Beth B. Monroe

Plant-derived phenolic acids (PAs) are small molecules with antimicrobial, antioxidant, anti-inflammatory, and pro-coagulant properties. Their chemistry enables facile potential incorporation into biomaterial scaffolds to provide naturally-derived functionalities that could improve healing outcomes. While PAs have been previously characterized, their structure-property relationships in terms of antioxidant and antimicrobial properties are not well-understood, particularly in the context of their use in medical applications. To that end, a library of PAs with varied pendant groups was characterized here. It was found that increasing the number of radical-scavenging hydroxyl and methoxy groups on PAs increased antioxidant properties. All PAs showed some antimicrobial activity against the selected bacteria strains (Escherichia coli, Staphylococcus epidermidis (native and drug-resistant), and Staphylococcus aureus (native and drug-resistant)) at concentrations that are feasible for incorporation into polymeric biomaterials. In general, a trend of slightly decreased antimicrobial efficacy with increased number of pendant hydroxyl and methoxy groups was observed. The carboxylic acid group of a selection of PAs was modified with a polyurethane monomer analog. Modification did not greatly affect antioxidant or antimicrobial properties in comparison to unmodified controls, indicating that the carboxylic acid group of PAs can be altered without losing functionality. These results could be utilized for rational selection of phenolic moieties for use as therapeutics on their own or as part of a biomaterial scaffold with desired healing outcomes.


1992 ◽  
Vol 44 (11) ◽  
pp. 1883-1892 ◽  
Author(s):  
P. Laurienzo ◽  
M. Malinconico ◽  
E. Martuscelli ◽  
G. Ragosta ◽  
M. G. Volpe

1989 ◽  
Vol 29 (20) ◽  
pp. 1466-1476 ◽  
Author(s):  
J.-F. Hwang ◽  
J. A. Manson ◽  
R. W. Hertzberg ◽  
G. A. Miller ◽  
L. H. Sperling

1992 ◽  
Vol 274 ◽  
Author(s):  
A. C. Archer ◽  
P. A. Lovell ◽  
J. McDonald ◽  
M. N. Sherratt ◽  
R. J. Young

ABSTRACTRubber-toughened poly(methyl methacrylate) materials have been prepared by blending poly(methyl methacrylate) with specially-synthesised, refractive index matched particles containing two, three and four radially-alternating rubbery and glassy layers. The paper describes the effects upon mechanical properties of (i) two-, three- and four-layer particle structure and (ii) particle diameter and glassy core size for three-layer particles.


2010 ◽  
Vol 45 (10) ◽  
pp. 2633-2639 ◽  
Author(s):  
Maria d. M. Salinas-Ruiz ◽  
Alex A. Skordos ◽  
Ivana K. Partridge

2006 ◽  
Vol 957 ◽  
Author(s):  
Monica Sorescu ◽  
Lucian Diamandescu ◽  
Jason Wood

ABSTRACTThe xZnO-(1-x)α-Fe2O3 nanoparticles system has been obtained by mechanochemical activation for x=0.1, 0.3 and 0.5 and for ball milling times ranging from 2 to 24 hours. Structural and morphological characteristics of the zinc-doped hematite system were investigated by X-ray diffraction (XRD) and Mössbauer spectroscopy. As ZnO is not soluble in hematite in the bulk form, the present study clearly demonstrates that the solubility limits of an immiscible system can be extended beyond the limits in the solid state by mechanochemical activation. Moreover, this synthesis route allowed us to reach nanometric particle dimensions, which would make the materials very important for gas sensing applications.


Sign in / Sign up

Export Citation Format

Share Document