scholarly journals Chemometrics for Selection, Prediction, and Classification of Sustainable Solutions for Green Chemistry—A Review

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2055
Author(s):  
Marta Bystrzanowska ◽  
Marek Tobiszewski

In this review, we present the applications of chemometric techniques for green and sustainable chemistry. The techniques, such as cluster analysis, principal component analysis, artificial neural networks, and multivariate ranking techniques, are applied for dealing with missing data, grouping or classification purposes, selection of green material, or processes. The areas of application are mainly finding sustainable solutions in terms of solvents, reagents, processes, or conditions of processes. Another important area is filling the data gaps in datasets to more fully characterize sustainable options. It is significant as many experiments are avoided, and the results are obtained with good approximation. Multivariate statistics are tools that support the application of quantitative structure–property relationships, a widely applied technique in green chemistry.

Author(s):  
Barbara A. Wood

A controversial topic in the study of structure-property relationships of toughened polymer systems is the internal cavitation of toughener particles resulting from damage on impact or tensile deformation.Detailed observations of the influence of morphological characteristics such as particle size distribution on deformation mechanisms such as shear yield and cavitation could provide valuable guidance for selection of processing conditions, but TEM observation of damaged zones presents some experimental difficulties.Previously published TEM images of impact fractured toughened nylon show holes but contrast between matrix and toughener is lacking; other systems investigated have clearly shown cavitated impact modifier particles. In rubber toughened nylon, the physical characteristics of cavitated material differ from undamaged material to the extent that sectioning of heavily damaged regions by cryoultramicrotomy with a diamond knife results in sections of greater than optimum thickness (Figure 1). The detailed morphology is obscured despite selective staining of the rubber phase using the ruthenium trichloride route to ruthenium tetroxide.


2011 ◽  
Vol 8 (3) ◽  
pp. 1074-1085
Author(s):  
E. Konoz ◽  
Amir H. M. Sarrafi ◽  
S. Ardalani

Parallel artificial membrane permeation assays (PAMPA) have been extensively utilized to determine the drug permeation potentials. In the present work, the permeation of miscellaneous drugs measured as flux by PAMPA (logF) of 94 drugs, are predicted by quantitative structure property relationships modeling based on a variety of calculated theoretical descriptors, which screened and selected by genetic algorithm (GA) variable subset selection procedure. These descriptors were used as inputs for generated artificial neural networks. After generation, optimization and training of artificial neural network (5:3:1), it was used for the prediction of logF for the training, test and validation sets. The standard error for the GA-ANN calculated logF for training, test and validation sets are 0.17, 0.028 and 0.15 respectively, which are smaller than those obtained by GA-MLR model (0.26, 0.051 and 0.22, respectively). Results obtained reveal the reliability and good predictably of neural network model in the prediction of membrane permeability of drugs.


2020 ◽  
Author(s):  
Amanda J. Parker ◽  
George Opletal ◽  
Amanda Barnard

Computer simulations and machine learning provide complementary ways of identifying structure/property relationships that are typically targeting toward predicting the ideal singular structure to maximise the performance on a given application. This can be inconsistent with experimental observations that measure the collective properties of entire samples of structures that contain distributions or mixture of structures, even when synthesized and processed with care. Metallic nanoparticle catalysts are an important example. In this study we have used a multi-stage machine learning workflow to identify the correct structure/property relationships of Pt nanoparticles relevant to oxygen reduction (ORR), hydrogen oxidation (HOR) and hydrogen evolution (HER) reactions. By including classification prior to regression we identified two distinct classes of nanoparticles, and subsequently generate the class-specific models based on experimentally relevant criteria that are consistent with observations. These multi-structure/multi-property relationships, predicting properties averaged over a large sample of structures, provide a more accessible way to transfer data-driven predictions into the lab.


2021 ◽  
Author(s):  
Tobias Gensch ◽  
Gabriel dos Passos Gomes ◽  
Pascal Friederich ◽  
Ellyn Peters ◽  
Theophile Gaudin ◽  
...  

The design of molecular catalysts typically involves reconciling multiple conflicting property requirements, largely relying on human intuition and local structural searches. However, the vast number of potential catalysts requires pruning of the candidate space by efficient property prediction with quantitative structure-property relationships. Data-driven workflows embedded in a library of potential catalysts can be used to build predictive models for catalyst performance and serve as a blueprint for novel catalyst designs. Herein we introduce <i>kraken</i>, a discovery platform covering monodentate organophosphorus(III) ligands providing comprehensive physicochemical descriptors based on representative conformer ensembles. Using quantum-mechanical methods, we calculated descriptors for 1,558 ligands, including commercially available examples, and trained machine learning models to predict properties of over 300,000 new ligands. We demonstrate the application of <i>kraken</i> to systematically explore the property space of organophosphorus ligands and how existing datasets in catalysis can be used to accelerate ligand selection during reaction optimization.


2019 ◽  
Vol 97 (10) ◽  
pp. 1125-1132 ◽  
Author(s):  
Zahid Iqbal ◽  
Adnan Aslam ◽  
Muhammad Ishaq ◽  
Muhammad Aamir

In many applications and problems in material engineering and chemistry, it is valuable to know how irregular a given molecular structure is. Furthermore, measures of the irregularity of underlying molecular graphs could be helpful for quantitative structure property relationships and quantitative structure-activity relationships studies, and for determining and expressing chemical and physical properties, such as toxicity, resistance, and melting and boiling points. Here we explore the following three irregularity measures: the irregularity index by Albertson, the total irregularity, and the variance of vertex degrees. Using graph structural analysis and derivation, we compute the above-mentioned irregularity measures of several molecular graphs of nanotubes.


Sign in / Sign up

Export Citation Format

Share Document