Enhanced Biodegradation of Herbicides in Soil and Effects on Weed Control

1987 ◽  
Vol 1 (4) ◽  
pp. 341-349 ◽  
Author(s):  
R. Gordon Harvey ◽  
J. H. Dekker ◽  
Richard S. Fawcett ◽  
Fred W. Roeth ◽  
Robert G. Wilson

Research conducted since 1979 in the north central United States and southern Canada demonstrated that after repeated annual applications of the same thiocarbamate herbicide to the same field, control of some difficult-to-control weed species was reduced. Laboratory studies of herbicide degradation in soils from these fields indicated that these performance failures were due to more rapid or “enhanced” biodegradation of the thiocarbamate herbicides after repeated use with a shorter period during which effective herbicide levels remained in the soils. Weeds such as wild proso millet [Panicum miliaceumL. spp.ruderale(Kitagawa) Tzevelev. #3PANMI] and shattercane [Sorghum bicolor(L.) Moench. # SORVU] which germinate over long time periods were most likely to escape these herbicides after repeated use. Adding dietholate (O,O-diethylO-phenyl phosphorothioate) to EPTC (S-ethyl dipropyl carbamothioate) reduced problems caused by enhanced EPTC biodegradation in soils treated previously with EPTC alone but not in soils previously treated with EPTC plus dietholate. While previous use of other thiocarbamate herbicides frequently enhanced biodegradation of EPTC or butylate [S-ethyl bis(2-methylpropyl)carbamothioate], previous use of other classes of herbicides or the insecticide carbofuran (2,3 -dihydro-2,2 -dimethyl-7-benzofuranyl methylcarbamate) did not. Enhanced biodegradation of herbicides other than the thiocarbamates was not observed.

2008 ◽  
Vol 22 (4) ◽  
pp. 646-653 ◽  
Author(s):  
Martin M. Williams ◽  
Tom L. Rabaey ◽  
Chris M. Boerboom

Knowledge of weed community structure in vegetable crops of the north central region (NCR) is poor. To characterize weed species composition present at harvest (hereafter called residual weeds) in processing sweet corn, 175 fields were surveyed in Illinois, Minnesota, and Wisconsin from 2005 to 2007. Weed density was enumerated by species in thirty 1-m2quadrats placed randomly along a 300- to 500-m loop through the field, and additional species observed outside quadrats were also recorded. Based on weed community composition, population density, and mean plant size, overall weed interference level was rated. A total of 56 residual weed species were observed and no single species dominated the community of NCR processing sweet corn. Several of the most abundant species, such as common lambsquarters and velvetleaf, have been problems for many years, while other species, like wild-proso millet, have become problematic in only the last 20 yr. Compared to a survey of weeds in sweet corn more than 40 yr ago, greater use of herbicides is associated with reductions in weed density by approximately an order of magnitude; however, 57% of fields appeared to suffer yield loss due to weeds. Sweet corn harvest in the NCR ranges from July into early October. Earlier harvests were characterized by some of the highest weed densities, while late-emerging weeds such as eastern black nightshade occurred in fields harvested after August. Fall panicum, giant foxtail, wild-proso millet, common lambsquarters, and velvetleaf were the most abundant species across the NCR, yet each state had some unique dominant weeds.


Weed Science ◽  
1990 ◽  
Vol 38 (2) ◽  
pp. 179-185
Author(s):  
Brent W. Bean ◽  
Fred W. Roeth ◽  
Alex R. Martin ◽  
Robert G. Wilson

Field and laboratory studies were conducted to examine the influence of continuous use and rotation of extenders on EPTC persistence in soils from Clay Center and Scottsbluff, NE. Rotation of EPTC + dietholate and EPTC + fonofos in soils with three prior annual treatments of each combination did not improve weed control compared to continuous use. SC-0058 was generally effective in slowing EPTC biodegradation in soils previously treated with EPTC, EPTC + dietholate, EPTC + fonofos, or EPTC + SC-0058. Dietholate was effective in slowing EPTC biodegradation in soil previously treated with EPTC or EPTC + SC-0058. SC-0058 appeared to have an inhibitory influence on the initial development of soil-enhanced EPTC biodegradation. Any enhanced biodegradation of dietholate or SC-0058 that may occur after repeated use was not a factor in enhanced EPTC degradation in EPTC + extender history soils.


PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0139188 ◽  
Author(s):  
Laura Aldrich-Wolfe ◽  
Steven Travers ◽  
Berlin D. Nelson

1995 ◽  
Vol 52 (2) ◽  
pp. 416-424 ◽  
Author(s):  
James W. LaBaugh

Algal chlorophyll a is commonly used as a surrogate for algal biomass. Data from three lakes in western Nebraska, five wetlands in north-central North Dakota, and two lakes in north-central Minnesota represented a range in algal biovolume of over four orders of magnitude and a range in chlorophyll a from less than 1 to 380 mg∙m−3. Analysis of these data revealed that there was a linear relation, log10 algal biovolume = 5.99 + 0.09 chlorophyll a (r2 = 0.72), for cases in which median values of chlorophyll a for open-water periods were less than 20 mg∙m−3. There was no linear relation in cases in which median chlorophyll a concentrations were larger than 20 mg∙m−3 for open-water periods, an occurrence found only in shallow prairies lakes and wetlands for years in which light penetration was the least.


2015 ◽  
Vol 107 (4) ◽  
pp. 1401-1410 ◽  
Author(s):  
Yi Wang ◽  
Matthew D. Ruark ◽  
Amanda J. Gevens ◽  
Don T. Caine ◽  
Amanda L. Raster ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document