Sericea Lespedeza (Lespedeza cuneata) Control with Selected Postemergence Herbicides

1992 ◽  
Vol 6 (3) ◽  
pp. 573-576 ◽  
Author(s):  
John V. Altom ◽  
Jimmy F. Stritzke ◽  
David L. Weeks

Field experiments were conducted in the summers of 1988 and 1989 to evaluate sericea lespedeza control with POST herbicides. Triclopyr, picloram, 2,4-D, metsulfuron, dicamba, and selected herbicide mixtures were evaluated in 1988 and 1989. Clopyralid was evaluated in 1988 and fluroxypyr in 1989. Triclopyr at 0.56 and 1.12 kg ha–1controlled sericea lespedeza both years. Fluroxypyr at 0.56 kg ha–1also controlled sericea lespedeza. Control with picloram and metsulfuron was variable. Other treatments evaluated did not control sericea lespedeza.

2009 ◽  
Vol 2 (4) ◽  
pp. 337-344 ◽  
Author(s):  
Rodney L. Farris ◽  
Don S. Murray

AbstractTwo field experiments were conducted at the Agronomy Research Station near Stillwater, OK in 2004 and 2005 to identify and evaluate herbicides applied preplant incorporated, preemergence, early postemergence, or late postemergence for the control of seedling sericea lespedeza. Trifluralin, applied preplant incorporated, controlled seedlings 77 (15 wk after emergence [WAE]) and 63% (16 WAE) in 2004 and 2005, respectively. Flumioxazin, imazapic, fluometuron, diuron, sulfentrazone, atrazine, metribuzin, and metolachlor applied preemergence all provided greater than 86% seedling control at 15 and 16 WAE in both years. Diclosulam, applied preemergent, controlled seedlings 47% at 15 WAE in 2004 and 91% control at 16 WAE in 2005. In 2004, triclopyr, metsulfuron-methyl, glyphosate, picloram, dicamba, and 2,4-D amine plus picloram (tank-mix) applied early postemergence controlled 90 to 100% of the sericea lespedeza seedlings at 15 WAE. However, in 2005, only triclopyr, metsulfuron-methyl, glyphosate, and 2,4-D amine plus picloram (tank-mix) showed greater than 80% control at 16 WAE. Triclopyr, applied late postemergence, controlled seedlings 100% at 15 and 16 WAE, in both years. In 2004, dicamba plus 2,4-D (premix) and glyphosate were the only other herbicides which provided greater than 75% control at 15 WAE. These data suggest that there were preemergence-applied herbicides that were effective for the control of seedling sericea lespedeza. These data also suggest that triclopyr was the most effective postemergence-applied herbicide for the control of seedling sericea lespedeza. The data also showed that the overall level of control of seedling sericea lespedeza decreased as the season progressed and the plant matured.


Weed Science ◽  
1971 ◽  
Vol 19 (1) ◽  
pp. 21-24 ◽  
Author(s):  
C. S. Hoveland ◽  
G. A. Buchanan ◽  
E. D. Donnelly

Sericea lespedeza (Lespedeza cuneata (Dumont) G. Don, var. Serala) was planted in three field experiments at three seeding rates with four rates of S-propyl dipropylthiocarbamate (vernolate). Grass and broadleaf weed populations were reduced, but sericea was unaffected by vernolate incorporated preplant. Use of a herbicide permitted a reduction in seeding rate with no decrease in sericea stand or forage yield. This treatment permitted harvesting a cutting of hay the establishment year with only a minor effect on production the next year. The beneficial effect of vernolate on sericea yield continued the second year, mainly because sericea plants were better established and more vigorous. Sericea seeding rate did not affect weed competition or forage yield. A seeding rate of 11 kg/ha with 3.4 kg/ha vernolate was the most practical treatment.


2016 ◽  
Vol 47 (5) ◽  
pp. 630-638 ◽  
Author(s):  
Elena Mikhailova ◽  
Donald Hagan ◽  
Julia Sharp ◽  
Tristan Allerton ◽  
Kylie Burdette ◽  
...  

2021 ◽  
Vol 99 (Supplement_2) ◽  
pp. 41-41
Author(s):  
Luana L Ribeiro ◽  
Ryszard Puchala ◽  
Arthur L Goetsch

Abstract Eighteen Katahdin (initial body weight of 74 kg; SEM=1.8) and 18 St. Croix ewes (55 kg; SEM=1.3) were used in an experiment with four 6-wk periods to determine effects of dietary level of Sericea lespedeza (Lespedeza cuneata) containing 5.8% condensed tannins (dry matter; DM) and other supplemental ingredients on feed intake, digestion, and ruminal methane emission. Diets were consumed ad libitum and included a concentrate supplement at 0.45% BW (DM). Alfalfa was the basal forage for control (CON), ionophore (ION; lasalocid at 33 mg/kg DM), coconut oil (3%; CCO), and soybean oil (3%; SBO) diets, and forage in moderate- and high-lespedeza diets was a 1:1 mixture of alfalfa and lespedeza and all lespedeza, respectively (MSL and HSL, respectively). Data were analyzed with a 2 x 6 factorial arrangement of treatments, period as a repeated measure, and a mixed effects model. Digestion and methane emission were determined in weeks 4, 10, 16, and 22. Total DM intake was similar among treatments (P = 0.070) but numerically greatest for HSL (1,197, 1,297, 1,491, 1,203, 1,195, and 1,207 g/d; SEM=81.1), OM digestibility ranked (P < 0.05) CON, ION, CCO, and SBO > MSL > HSL (69.2, 57.6, 50.3, 66.3, 66.0, and 68.7%; SEM=1.57), and digestible OM intake was similar among treatments (P = 0.517; 697, 607, 589, 598, 635, and 690 g/d for CON, MSL, HSL, ION, CCO, and SBO, respectively; SEM=50.4). There were no interactions involving time in ruminal methane emission, which was greatest among treatments for CON (P < 0.05) in MJ/d (1.39, 0.93, 0.90, 0.92, 0.85, and 0.96; SEM=0.069) and relative to digestible energy intake (20.6, 15.7, 16.8, 16.1, 13.7, and 13.9% for CON, MSL, HSL, ION, CCO, and SBO, respectively; SEM=1.223). In conclusion, dietary inclusion of Sericea lespedeza may offer a natural and sustainable means of decreasing ruminal methane emission by hair sheep as previously shown in goats, with a magnitude of impact similar to that of some other supplemental dietary ingredients.


2021 ◽  
Vol 99 (Supplement_2) ◽  
pp. 38-38
Author(s):  
Wei L Wang ◽  
Luana L Ribeiro ◽  
Italo L Portugal ◽  
Terry A Gipson ◽  
Arthur L Goetsch

Abstract Twenty-four Alpine doelings (initial body weight (BW) and age of 25.3±0.55 kg and 10.4±0.11 mo, respectively) and 24 Katahdin ewe lambs (28.3±1.02 kg and 9.6±0.04 mo, respectively) were used to determine effects of dietary level of Sericea lespedeza (Lespedeza cuneata; 10% condensed tannins) on heat energy and ruminal emission of the greenhouse gas methane determined with an open-circuit calorimetry system. Pens with Calan feeding gates were used in the study with four 6–7-wk periods. Diets (i.e., treatments) consumed ad libitum were 75% ground hay, alfalfa, a 1:1 mixture of alfalfa and lespedeza (AL), and lespedeza. Data were analyzed with a 2 x 3 factorial arrangement of treatments, repeated measure of period, and a mixed effects model. Feeders were open 195 and 205 min/d for Alpine and Katahdin (SEM=9.8) and longer (P < 0.05) for diets with lespedeza (159, 209, and 231 min/d for alfalfa, AL, and lespedeza, respectively). Rate of dry matter intake (DMI) was greater (P < 0.05) for Katahdin vs. Alpine (10.2 and 6.1 g/min) and for alfalfa than for AL and lespedeza (11.1, 8.1, and 6.7 g/min, respectively). Heat energy was greater (P < 0.05) in MJ/d for Katahdin than for Alpine (10.19 vs. 7.90) and similar among diets (9.20, 9.40, and 8.53; SEM=0.266), but values in kJ/kg BW0.75 were similar between animal types (560 and 579; SEM=8.4) and greatest (P < 0.05) among diets for AL (563, 592, and 553 for alfalfa, AL, and lespedeza, respectively). Ruminal methane emission differed (P < 0.05) between animal types in MJ/d (1.17 and 1.44), kJ/g DMI (1.39 and 1.23), and kJ/g average daily gain (ADG; 18.1 and 9.8 for Alpine and Katahdin, respectively). Regardless of period, diet did not impact methane emission in MJ/d or relative to DMI, BW, or ADG. In conclusion, it is unclear why dietary inclusion of lespedeza did not reduce ruminal methane emission as in previous studies. Species differences in methane relative to DMI and ADG (i.e., lower for sheep than for goats) deserve further attention.


2006 ◽  
Vol 46 (10) ◽  
pp. 1301 ◽  
Author(s):  
S. L. Davies ◽  
A. M. Storrie ◽  
A. S. Cook ◽  
R. A. Latta ◽  
A. D. Swan ◽  
...  

Farmers often experience inconsistent responses when using herbicides to terminate an established lucerne pasture prior to cropping. In an attempt to redress this problem, a series of field experiments were conducted between 1999 and 2002 at various locations in southern and northern New South Wales, the Australian Capital Territory, and south Western Australia that aimed to identify management guidelines that improved the efficacy of herbicide mixtures commonly used to remove lucerne. Collectively, these studies indicated that herbicides were generally less effective when applied either early (less than 2 weeks) or late (6 weeks or more) in the regrowth cycle of lucerne after defoliation. Herbicide efficacy tended to be greatest if applied to regrowth 3–5 weeks after defoliation, which corresponds to a time when the lucerne crown and root reserves are likely to be in the process of being replenished by photoassimilates transported from the shoot. The impact of timing of herbicide application in relation to season was compared at a number of locations. Across all the sites and years, spring herbicide applications were generally the most effective, removing on average 87% of the lucerne (range 53–100%) compared with 72% in summer (24–100%) and 60% in autumn (7–92%). Spring applications were also more consistent in their effect, removing >80% of the lucerne plants in 9 out of 12 experiments, whereas similar rates of removal occurred on 4 occasions in 9 summer applications and only twice in 8 autumn applications. Some of the seasonal variation could be explained by differences in the amount of rainfall prior to herbicide applications. It was assumed that the relationship between rainfall and herbicide efficacy reflected the stimulation of lucerne shoot and root growth by the additional soil moisture before herbicide treatment. Herbicide mixtures that contained ingredients such as picloram that retain residual activity in the soil tended to be more effective and were less influenced by lucerne growth and season than those herbicides with little or no residual activity. However, such chemicals could potentially restrict which crops can subsequently be grown after a lucerne pasture has been removed. It was concluded that >80% of lucerne plants were likely to be removed using herbicides provided that the herbicide treatment was applied to actively growing lucerne 3–5 weeks after defoliation, and when greater than 70–95 mm rain had fallen in the 6–8 weeks prior to application.


1989 ◽  
Vol 3 (1) ◽  
pp. 136-142 ◽  
Author(s):  
Edward S. Hagood

Field experiments were established to evaluate preemergence and postemergence herbicides for control of triazine-resistant smooth pigweed and common lambsquarters in no-till corn. When applied preemergence, alachlor in the microencapsulated formulation controlled smooth pigweed better than the emulsifiable concentrate formulation and better than either metolachlor or pendimethalin. These herbicides applied preemergence did not control common lambsquarters consistently. Pendimethalin controlled both triazine-resistant species when applied as a sequential treatment of a preemergence and an early postemergence application. Control of triazine-resistant smooth pigweed and common lambsquarters was excellent when dicamba was applied early postemergence in treatments containing alachlor, metolachlor, or pendimethalin applied preemergence and/or early postemergence. Thiameturon and CGA-131036 controlled triazine-resistant smooth pigweed with acceptable crop tolerance. Thiameturon also controlled common lambsquarters, but control was unacceptable with CGA-131036.


2019 ◽  
Vol 43 ◽  
Author(s):  
Alexandre Magno Brighenti ◽  
Flávio Rodrigo Gandolfi Benites ◽  
Fausto Souza Sobrinho

ABSTRACT Cynodon nlemfuensis Vanderyst, commonly called African star grass, is excellent forage in pasture formation and herd feeding. However, little information is available regarding weed management in areas of star grasses. Two field experiments were carried out in 2017 and 2018 to evaluate the response of African star grass to postemergence herbicides. The treatments applied were as follows: 2,4-D (1,340.0 g ae ha-1); 2,4-D + picloram (720.0 +192.0 g ae ha-1 + 0.3% v/v nonionic surfactant); fluroxypyr + picloram (80.0 + 80.0 g ae ha-1 + 0.3% v/v mineral oil); fluroxypyr + aminopyralid (160.0 + 80.0 g ae ha-1 + 0.3% v/v mineral oil); fluroxypyr + triclopyr (320.0 + 960.0 g ae ha-1 + 0.3% v/v mineral oil); bentazon (720.0 g ai ha-1 + 0.5% v/v mineral oil); imazapyr (25.0 g ai ha-1); monosodium methyl arsenate (MSMA) (1,440.0 g ai ha-1 + 0.1% v/v nonionic surfactant); atrazine + S-metolachlor (1,480.0 + 1,160.0 g ai ha-1); atrazine + tembotrione (1,000.0 + 100.8 g ai ha-1 + 0.3% v/v mineral oil) and a control without herbicide application. The most phytotoxic treatments for the African star grass plants were fluroxypyr + amininopyralid, fluroxypyr + triclopyr and atrazine + tembotrione. The dry matter yield of star grass plants was not reduced by the applications of 2,4-D, 2,4-D + picloram, bentazon, imazapyr, MSMA and atrazine + S-metolachlor. These herbicides can be considered potential practices in African star grass crop management.


Sign in / Sign up

Export Citation Format

Share Document