Interactions of Fenoxaprop-ethyl with Fenchlorazole-ethyl in Annual Grasses

1993 ◽  
Vol 7 (1) ◽  
pp. 163-168 ◽  
Author(s):  
Gerald R. Stephenson ◽  
Abraham Tal ◽  
Norman A. Vincent ◽  
J. Christopher Hall

In growth room studies, POST applications of fenoxaprop-ethyl at 50 g ai ha−1 at the four- to five-leaf stage of development were non-toxic to barnyardgrass, large crabgrass, and yellow foxtail. POST applications of fenchlorazole-ethyl at 12.5 or 25.0 g ai ha−1 were also nontoxic to these same three species. However, when the two chemicals were applied in combination at the above rates they were toxic to all three species, indicating a synergistic interaction in all three species. In additional studies, a sensitive biotype of wild oat was severely injured by fenoxaprop-ethyl at 50 g ai ha−1 and a resistant biotype of wild oat was only slightly injured by fenoxaprop-ethyl at rates as high as 800 g ai ha−1. However, no significant interactions were observed between fenoxaprop-ethyl and fenchlorazole-ethyl in either of these wild oat biotypes.

Weed Science ◽  
1982 ◽  
Vol 30 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Mahendra P. Sharma ◽  
Fayaz A. Qureshi ◽  
William H. Vanden Born

Absorption, translocation, and metabolism of the methyl ester of14C-flamprop [N-benzoyl-N-(3-chloro-4-fluorophenyl)-DL-alanine] (hereafter referred to as flamprop-methyl) and14C-barban (4-chloro-2-butynyl-m-chloro carbanilate) in wild oat (Avena fatuaL.) were investigated to determine the basis of the synergistic interaction between the two herbicides. The mutual effects of the two herbicides were studied when they were applied together to wild oat at the two- and four-leaf stage. The addition of the commercial formulation of barban, barban formulation additives, technical barban, or the nonionic surfactant polyoxyethylene-6-tridecylether resulted in varying degrees of increase in the absorption of14C-flamprop-methyl. Translocation of14C-flamprop-methyl following leaf application in wild oat was mainly acropetal. The addition of commercial barban to14C-flamprop-methyl did not influence the pattern of14C translocation. Metabolism of flamprop-methyl by wild oat at either leaf stage was not influenced by barban. Absorption of14C-barban was increased by the addition of the commercial formulation of flamprop-methyl and by polyoxyethylene-6-tridecylether. The addition of flamprop-methyl did not influence the pattern of translocation and metabolism of14C-barban in wild oat at either leaf stage. It is concluded that increased absorption of flamprop-methyl and barban by wild oat at the two- and four-leaf stages is the most important factor in the synergistic interaction between these herbicides. Translocation and metabolism of the herbicides do not seem to be important factors in the synergism observed.


1993 ◽  
Vol 7 (4) ◽  
pp. 946-948 ◽  
Author(s):  
Abraham Tal ◽  
Yuval Benyamini ◽  
Baruch Rubin

In greenhouse studies, tralkoxydim applied POST at 100 to 300 g ai/ha during the three-to four-leaf stage of development were differentially toxic to threeHordeumspecies. Tralkoxydim severely injured wall barley by cessation of growth and death of the whole plant.Hordeum spontaneum, barley, and wheat were less affected by the herbicide in declining order, respectively. However, 4 wk after treatment, full recovery was observed in barley and wheat, but not inH. spontaneum, as reflected in the shoot fresh weight. Tralkoxydim could be considered as a selective herbicide in wheat and barley fields for the control of wall barley.


Weed Science ◽  
1986 ◽  
Vol 34 (4) ◽  
pp. 587-590 ◽  
Author(s):  
W. James Grichar ◽  
Thurman E. Boswell

CGA 82725 {2-propynyl [2-[4-[(3,5-dichloro-2-pyridinyl)oxy)] phenoxy] propanoate}, haloxyfop {2-[4-[[3-chloro-5-(trifluoromethyl)-2-pyridinyl] oxy]phenoxy] propanoic acid}, sethoxydim {2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one}, and fluazifop {(±)-2-[4-[[5-(trifluoromethyl)-2-pyridinyl] oxy] phenoxy] propanoic acid} were applied postemergence to Texas panicum (Panicum texanumBuckl. # PANTE), large crabgrass [Digitaria sanguinalis(L.) Scop. # DIGSA], and broadleaf signalgrass [Brachiaria platyphylla(Griseb.)Nash. # BRAPP] in peanut (Arachis hypogaeaL. ‘Florunner’). Fluazifop applied at 280 and 410 g ai/ha, sethoxydim at 340 g ai/ha, haloxyfop at 140 g ai/ha, and CGA 82725 at 280 g ai/ha usually gave better control when applied to annual grasses in the two- to four-leaf stage than when applied at the six- to eight-leaf stage. Higher rates of application were required to provide acceptable weed control at the later stage of growth. Peanut yields were usually higher following the early applications, indicating that timing of application is important in obtaining improved yields.


Weed Science ◽  
1989 ◽  
Vol 37 (3) ◽  
pp. 375-379 ◽  
Author(s):  
Thomas J. Peters ◽  
Russell S. Moomaw ◽  
Alex R. Martin

The control of three summer annual grass weeds with herbicides during establishment of forage grasses was studied near Concord and Mead, NE, in 1984, 1985, and 1986. Three cool-season forage grasses, intermediate wheatgrass, tall fescue, and smooth bromegrass, and two warm-season grasses, big bluestem and switchgrass, were included. The control of three major summer annual grasses, green foxtail, barnyardgrass, and large crabgrass, was excellent with fenoxaprop at 0.22 kg ai/ha. Slight to moderate injury to cool-season forage grasses and severe injury to warm-season grasses were evident. Sethoxydim at 0.22 kg ai/ha and haloxyfop at 0.11 kg ai/ha controlled green foxtail and large crabgrass, but not barnyardgrass. Sulfometuron-treated big bluestem and switchgrass plots had the best forage stand frequencies and yields and, at the rate used, sulfometuron satisfactorily controlled green foxtail but only marginally controlled barnyardgrass and large crabgrass.


Weed Science ◽  
2009 ◽  
Vol 57 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Wesley J. Everman ◽  
Cassandra R. Mayhew ◽  
James D. Burton ◽  
Alan C. York ◽  
John W. Wilcut

Greenhouse studies were conducted to evaluate14C-glufosinate absorption, translocation, and metabolism in glufosinate-resistant corn, goosegrass, large crabgrass, and sicklepod. Glufosinate-resistant corn plants were treated at the four-leaf stage, whereas goosegrass, large crabgrass, and sicklepod were treated at 5, 7.5, and 10 cm, respectively. All plants were harvested at 1, 6, 24, 48, and 72 h after treatment (HAT). Absorption was less than 20% at all harvest intervals for glufosinate-resistant corn, whereas absorption in goosegrass and large crabgrass increased from approximately 20% 1 HAT to 50 and 76%, respectively, 72 HAT. Absorption of14C-glufosinate was greater than 90% 24 HAT in sicklepod. Significant levels of translocation were observed in glufosinate-resistant corn, with14C-glufosinate translocated to the region above the treated leaf and the roots up to 41 and 27%, respectively. No significant translocation was detected in any of the weed species at any harvest timing. Metabolites of14C-glufosinate were detected in glufosinate-resistant corn and all weed species. Seventy percent of14C was attributed to glufosinate metabolites 72 HAT in large crabgrass. Less metabolism was observed for sicklepod, goosegrass, and glufosinate-resistant corn, with metabolites composing less than 45% of detectable radioactivity 72 HAT.


1992 ◽  
Vol 6 (4) ◽  
pp. 938-948 ◽  
Author(s):  
Chester L. Foy ◽  
Harold L. Witt

Field experiments were conducted during 1982 to 1988 in Virginia to evaluate BAS 517, CGA 82725, clethodim, cloproxydim, fenoxaprop, fluazifop, fluazifop-P, haloxyfop, paraquat, quizalofop, SC-1084, sethoxydim, sethoxydim plus thifensulfuron, and terbacil for control of annual grasses in alfalfa. Herbicides were applied to alfalfa and grasses 2 to 30 cm in height after the first and/or second cuttings. Overall, the herbicides were highly effective in controlling fall panicum, giant foxtail, barnyardgrass, and large crabgrass. Alfalfa yields were not increased with herbicide treatments in several experiments. Only paraquat, applied later than recommended after cutting in one experiment, and sethoxydim plus thifensulfuron at one location reduced alfalfa yields.


1994 ◽  
Vol 8 (4) ◽  
pp. 673-678 ◽  
Author(s):  
David A. Wall

Field studies were undertaken in 1992 and 1993 to investigate the control of wild oat and green foxtail in flax with reduced rates of fluazifop-P and clethodim applied as tank-mixtures. Fluazifop-P plus clethodim at 50 + 18 g ai/ha controlled wild oat and green foxtail and was as effective as full rates of either herbicide applied alone. These rates represent a 20% reduction in total amount of active ingredient required to control wild oat and green foxtail. Application of fluazifop-P, and/or clethodim prior to the 3- to 4-leaf stage failed to control late emerging grass weeds. Application of graminicide mixtures at or after the 3- to 4-leaf stage controlled late emerging grass weeds and did not affect flax yield. When applied late, fluazifop-P at 175 g/ha tended to reduce flax yield, although weed control was acceptable and no foliar injury was observed following treatment. The efficacy of graminicide mixtures was reduced by addition of bromoxynil plus MCPA to the spray mix.


Weed Science ◽  
1977 ◽  
Vol 25 (5) ◽  
pp. 382-385 ◽  
Author(s):  
B.G. Todd ◽  
E.H. Stobbe

The selectivity of {2-[4-(2′,4′-dichlorophenoxy) phenoxy] methyl propionate}, (hereinafter referred to as dichlofop methyl), among wheat (Triticum aestivumL. ‘Neepawa’), barley (Hordeum vulgareL. ‘Bonanza’), wild oat (Avena fatuaL.), and green foxtail (Setaria viridis(L.) Beauv.) was investigated. On an ED50basis, barley, wild oat, and green foxtail were 2, 190, and 1,090 times more sensitive, respectively, to foliar-applied dichlofop methyl at the two-leaf stage than was wheat. Selectivity decreased with increasing maturity of the plant material with the ratio of selectivity between barley and wild oat decreasing from 55 at the two-leaf stage to three at the four-leaf-plus-one-tiller stage. Greater spray retention and more rapid penetration of dichlofop methyl partially explained the susceptibility of green foxtail, but did not explain selectivity between wheat, wild oat, and barley. Root uptake of14C-dichlofop methyl by the four species was proportional to the amount of solution absorbed during the treatment period and to the concentration of dichlofop methyl in the treatment solution but was not related to species sensitivity to this herbicide.


Weed Science ◽  
1976 ◽  
Vol 24 (6) ◽  
pp. 619-626 ◽  
Author(s):  
Y. Eshel ◽  
R.L. Zimdahl ◽  
E.E. Schweizer

A synergistic interaction occurred when sugarbeets (Beta vulgarisL. ‘Mono-Hy Al’) were treated with mixtures of ethofumesate (2-ethoxy-2,3-dihydro-3,3-dimethyl-5-benzofuranyl methanesulphonate) and desmedipham [ethylm-hydroxycarbanilate carbanilate (ester)]. Depending on the stage of weed growth synergistic interactions were also observed on two weed species: wild mustard [Brassica kaber(DC.) L.C. Wheeler ‘pinnatifida’ (Stokes) L.C. Wheeler] and wild oat (Avena fatuaL.). Desmedipham penetrated the foliage more slowly than did ethofumesate. The rate of desmedipham penetration was positively correlated with the concentration of its formulants (solvents and adjuvants) in the spraying emulsion, and to a lesser extent with the formulants of ethofumesate. Increasing the spray volume also increased desmedipham penetration. None of these factors affected penetration by ethofumesate.14C-labeled ethofumesate and desmedipham did not translocate out of treated leaves regardless of the concentration of formulants or active ingredients. These data suggest that the synergistic interaction is mainly due to the increased penetration by desmedipham when applied with ethofumesate.


Weed Science ◽  
1986 ◽  
Vol 34 (3) ◽  
pp. 403-408 ◽  
Author(s):  
W. Carroll Johnson ◽  
Harold D. Coble

Broadleaf signalgrass [Brachiaria platyphylla(Griseb.) Nash # BRAPP has recently become the dominant annual grass in certain fields of the North Carolina Coastal Plains. Previously, fall panicum (Panicum dichotomiflorumMichx. # PANDI) and large crabgrass [Digitaria sanguinalis(L.) Scop. # DIGSA] were the dominant annual grasses in the region. One of the possible reasons for the observed population shift could be production of inhibitors or stimulators by one species that affects the population dynamics of the other species. Studies were initiated to evaluate the effects of broadleaf signalgrass, large crabgrass, and fall panicum residue, applied as a mulch or soil incorporated, on five indicator species: the three weeds themselves, corn (Zea maysL.), and soybean [Glycine max(L.) Merr.]. At expected residue levels, the degree of inhibition or stimulation from fall panicum and broadleaf signalgrass was determined to be significant for some indicator species. When such responses were seen, the amount of residue necessary to produce these results was usually within the concentrations normally observed in field situations. Based on these results, it appears that the observed population shift is partially mediated by the production of inhibitors or stimulators through plant residue. Other factors such as differential herbicide selectivity and crop rotation are being investigated.


Sign in / Sign up

Export Citation Format

Share Document