Red Rice (Oryza sativa) Biology. I. Characterization of Red Rice Ecotypes

1999 ◽  
Vol 13 (1) ◽  
pp. 12-18 ◽  
Author(s):  
José A. Noldin ◽  
James M. Chandler ◽  
Garry N. McCauley

Plant characteristics of red rice ecotypes obtained from Arkansas, Louisiana, Mississippi, and Texas, including 11 strawhulled, five blackhulled, two goldhulled, and one brownhulled type, were evaluated under field conditions. Most ecotypes were uniform and stable but manifested considerable genetic variability. Red rice plants had pubescent leaves, were taller with lighter green color, and produced more tillers and panicles per plant than rice cultivars ‘Lemont,’ ‘Mars,’ and ‘Maybelle.’ Most ecotypes were highly susceptible to seed shattering starting about 14 d after anthesis when seed moisture was more than 25%. Seeds of most ecotypes were highly dormant at harvest. Rice cultivars had a larger flag leaf and more total leaf area per plant at anthesis and produced more seeds per panicle than red rice. Some red rice ecotypes had plant characteristics closely related to cultivated rice suggesting natural hybridization with rice.

2006 ◽  
Vol 20 (3) ◽  
pp. 576-584 ◽  
Author(s):  
Vinod K. Shivrain ◽  
Nilda R. Burgos ◽  
Karen A. K. Moldenhauer ◽  
Ronald W. Mcnew ◽  
Tomilea L. Baldwin

Experiments were conducted to determine the inheritance of resistance in crosses between imazethapyr-resistant rice and red rice. Past experiments on red rice control, using the Clearfield rice technology, resulted in outcrossing between Clearfield rice and Stuttgart strawhull red rice. The F2 generation of these spontaneous crosses were characterized with respect to inheritance of imazethapyr resistance, leaf color and leaf pubescence, and seed shattering, pubescence, color, and size. Agronomic traits of hybrids were also observed in relation to their parents. To determine the segregation of resistance among F2 phenotypes, the response of three- to four-leaf plants to imazethapyr was scored 3 wk after application as resistant (R, no imazethapyr symptoms), susceptible (S, death of plants), or intermediate (I, stunted plants). R, I, and S phenotypes segregated in a 1:2:1 ratio in the F2 generation. Two- or three-gene inheritance was documented for leaf and seed characteristics. A wide range in onset of flowering (70 to 130 d after planting) was observed in F2 families, although 6% of the plants did not flower during the growing season. F2 plants were taller and had more tillers than any of their parents. Resistance to imazethapyr is associated with a single, incompletely dominant allele.


Weed Science ◽  
2019 ◽  
Vol 67 (3) ◽  
pp. 303-310 ◽  
Author(s):  
Swati Shrestha ◽  
Gourav Sharma ◽  
Nilda Roma Burgos ◽  
Te-Ming Tseng

AbstractWeedy rice (Oryzaspp.) is one of the most competitive weeds in rice (Oryza sativaL.) production. Rapid growth, high tillering, enhanced ability to uptake fertilizers, asynchronous maturation, seed shattering, and high seedbank longevity makeOryzaspp. more competitive than cultivated rice and highly persistent.Oryzaspp. may be a source of useful traits for crop improvement such as herbicide tolerance. Greenhouse studies were conducted to evaluate the response of 54Oryzaspp. accessions collected between 2008 and 2009 from Arkansas to glyphosate, glufosinate, and flumioxazin applied at field rates. Rice cultivars ‘CL163’ and ‘REX’ were included for comparison. Accessions B20, B2, and S11 and B49, B51, and S59 showed reduced sensitivity to glyphosate and flumioxazin, respectively. These accessions had less than 40% injury 5 wk after treatment (WAT). Rice cultivars (CL163 and REX) were sensitive to both glyphosate and flumioxazin, with more than 95% plant mortality at 5 WAT. On average, blackhull accessions were more tolerant to glyphosate and flumioxazin than strawhull accessions. Dose–response analysis of B20, B2, and S11 confirmed 3- to 8-fold higher tolerance of these accessions to glyphosate. AllOryzaspp. and cultivated rice were not affected by glufosinate applied at 874 g ai ha−1(1X) and were controlled 100% by 1,311 g ai ha−1(1.5X).Oryzaspp. lines with reduced sensitivity to glyphosate and flumioxazin will be studied further for use in rice crop improvement.


Weed Science ◽  
2012 ◽  
Vol 60 (3) ◽  
pp. 451-461 ◽  
Author(s):  
David H. Gealy ◽  
Hesham Agrama ◽  
Melissa H. Jia

Weedy red rice is a troublesome weed problem in rice fields of the southern United States. Typically, red rice plants are much taller than rice cultivars, and most biotypes are either awnless with straw-colored hulls (strawhull) or have long awns with black-colored hulls (blackhull). Outcrossing between rice and red rice occurs at low rates, resulting in a broad array of plant types. Simple sequence repeat (SSR) markers were used to evaluate the genetic backgrounds of atypical red rice types obtained from rice farms in Arkansas, Louisiana, Missouri, and Mississippi, in comparison to standard red rice types and rice cultivars. Principal coordinates analysis (PCoA) and population structure analysis of atypical red rice accessions suggested that short-stature awnless (LhtsA−) and awned (LhtsA+) types, each representing a total of about 5% of a 460-accession collection, usually were closely genetically related to their normal-sized counterparts, and not with cultivated rice. A short-awned, intermediate height type, ‘Sawn’, representing about 4% of the accessions was genetically distinct from all of the other types. Key alleles in Sawn types appeared to be shared by both standard awnless (StdRRA−) and awned (StdRRA+) red rice, suggesting that Sawn types could have arisen from gene flow between awned and awnless red rice types.


2009 ◽  
Vol 66 (2) ◽  
pp. 195-203 ◽  
Author(s):  
Nereu Augusto Streck ◽  
Isabel Lago ◽  
Leosane Cristina Bosco ◽  
Gizelli Moiano de Paula ◽  
Felipe Brendler Oliveira ◽  
...  

Panicle differentiation (DP) is a key developmental stage in rice (Oryza sativa L.) because at this stage plant switches from vegetative to reproductive development and source-sink relation changes to allocate part of the photoassimilates for growing spikelets and kernels. The objective of this study was to determine the main stem Haun Stage (HS) and the number of leaves that still have to emerge until flag leaf at PD in several cultivated rice genotypes and red rice biotypes in different sowing dates. A two-year field experiment was conducted in Santa Maria, Rio Grande do Sul State, Brazil, during the 2005-2006 and 2006-2007 growing seasons, and three sowing dates each year. Nine cultivated rice genotypes and two red rice biotypes were used. PD was identified as the R1 stage of the COUNCE scale, by sampling four plants from each genotype on a daily basis. When 50% of the sampled plants were at R1, the main stem HS was measured in 20 plants per genotype. The main stem final leaf number (FLN) was measured in these 20 plants when the collar of the flag leaf was visible. HS at PD is related to FLN in many cultivated rice genotypes and red rice biotypes, and that at PD, the number of leaves still to emerge until flag leaf is not constant for all the rice genotypes. These findings are not in agreement with reports in the literature.


Weed Science ◽  
2005 ◽  
Vol 53 (4) ◽  
pp. 499-504 ◽  
Author(s):  
Brian V. Ottis ◽  
Kenneth L. Smith ◽  
Robert C. Scott ◽  
Ronald E. Talbert

Previous research has examined the extent to which red rice affects both yield and grain quality of cultivated rice. However, this research was conducted over 15 yr ago. Modern long-grain rice cultivars have the potential to produce yields above 10,000 kg ha−1; however, it is unknown whether modern rice cultivars sacrifice competitiveness to achieve higher yields, or if, in fact, they are more competitive. Field studies were conducted in 2002 and 2003 at the Southeast Research and Extension Center near Rohwer, AR, and at the University of Arkansas Pine Bluff Research Farm near Lonoke, AR, to investigate the effect of red rice density on interference between red rice and five rice cultivars (‘CL161’, ‘Cocodrie’, ‘LaGrue’, ‘Lemont’, and ‘XL8’). White rice yield reductions were between 100 and 755 kg ha−1for every red rice plant m−2. The hybrid rice, XL8, had higher yields than the conventional cultivars. Red rice contamination in milling samples increased linearly as a function of red rice density at Lonoke and Rohwer in 2003. Dockage for each cultivar was calculated on the basis of the relationship between red rice density and red rice contamination. Semidwarf Lemont was the most contaminated and hybrid XL8 the least contaminated by the various densities of red rice.


2021 ◽  
Author(s):  
Dibosh Bordoloi ◽  
Debojit Sarma ◽  
Nagendra Sarma Barua ◽  
Bikram Kishore Das

Abstract We carried out the morphological, biochemical and molecular characterization of 20 indigenous Joha (aromatic) rice cultivars of Assam. Distinctiveness, Uniformity and Stability (DUS) characterization of the cultivars revealed polymorphism in thirty-seven traits, establishing distinctiveness for their utilization in breeding programmes. Unweighted Neighbour Joining (UNJ) clustering based on usual Euclidean distances for the polymorphic markers grouped the cultivars into three multi-genotypic clusters. The Joha rice cultivars showed highly significant differences for all the quantitative traits except for panicle length. The genotypic and phenotypic coefficients of variability (GCV & PCV) were high for grain yield ha− 1 (24.62 & 24.85%) and filled grains panicle− 1 (23.69 & 25.02%). All the traits except days to flowering and maturity, flag leaf breadth and spikelet fertility exhibited high heritability along with high to moderate genetic advance, indicating the predominant role of additive gene action. Mahalanobis D2 analysis revealed three multi-genotypic and four mono-genotypic clusters of the cultivars. The cultivars' average polyunsaturated fatty acids were 37.9% oleic acid, 39.22% linoleic acid and 0.5% linolenic acid. The fatty acid profile of Local Joha was superior to the other cultivars as it showed a high level of linoleic and linolenic acid and low saturated fatty acid content. Kon Joha 4 and Ronga Joha contained the highest iron (82.88 mg kg− 1) and zinc (47.39 mg kg− 1), respectively, while protein content of Kon Joha-1 and amylose content of Harinarayan were the highest. Joha-Bihpuria showed the highest gel consistency of 140.50 mm. Kalijeera, Kunkuni Joha, Kon Joha-5, Manimuni Joha and Kon Joha-2 accorded a strong aroma. PCR amplified 174 alleles with a mean value of 2.64 across the 66 polymorphic SSR markers. PIC values ranged from 0.091 to 0.698, with an average of 0.326. The highly informative (PIC > 0.50) markers were RM316, RM283, RM585, RM1388, RM3562, RM171, R1M30, RM118, RM11and RM29 for identification of the twenty aromatic rice cultivars. The UNJ clustering based on Jaccard's coefficients classified the 20 cultivars into three distinct clusters with eight, ten and two entries.


Weed Science ◽  
2015 ◽  
Vol 63 (3) ◽  
pp. 647-657 ◽  
Author(s):  
David R. Gealy ◽  
Nilda R. Burgos ◽  
Kathleen M. Yeater ◽  
Aaron K. Jackson

Weedy red rice is a major weed pest of rice in the southern United States. Outcrossing between red rice and commercial tropical japonica rice cultivars has resulted in new weed biotypes that further hinder the effectiveness of weed management. In recent years, indica rice has been used increasingly as a germplasm source for breeding and for reduced-input systems in the United States, but little is known about its outcrossing potential with U.S. weedy red rice biotypes. In a 2-yr study, simple sequence repeat marker analysis was used to show that blackhull (BH) red rice (PI 653424) outcrossing to four, late-maturing indica cultivars averaged 0.0086% and ranged from 0.002% for ‘TeQing’ to 0.0173% for ‘4484’ (PI 615022). Rates of outcrossing to a tropical japonica cultivar standard, ‘Kaybonnet’ (0.032%), were substantially greater than for the indica cultivars. These differences in outcrossing were due largely to synchronization of flowering times between rice and red rice, with Kaybonnet and TeQing exhibiting the greatest and least synchronization, respectively. Outcrossing rates also may have been affected by rice–red rice flower density differences within the rice plots. Outcrossing from cultivated rice to the red rice (as pollen recipient), which was taller than all rice cultivars, was undetectable in these studies, and environmental conditions (e.g., temperature, humidity, solar radiation, and rainfall) were not strongly correlated with the outcrossing rates observed. Grain yields of the original BH red rice line were greatest in the Kaybonnet plots, demonstrating that the indica cultivars were superior competitors against this weed. Collectively, these results suggest that red rice biotypes that flower synchronously with rice cultivars are a potential source of pollen for outcrossing and gene flow in rice fields in the southern United States.


2021 ◽  
Author(s):  
Dibosh Bordoloi ◽  
Debojit Sarma ◽  
Nagendra Sarma Barua ◽  
Bikram Kishore Das

Abstract We carried out the morphological, biochemical, and molecular characterization of twenty cultivars of the least studied Joha (aromatic) rice indigenous to Assam. Unweighted Neighbour Joining (UNJ) clustering based on usual Euclidean distances for thirty-seven polymorphic morphological markers grouped the cultivars into three clusters with eight, eleven, and one genotype. The Joha rice cultivars showed highly significant differences for all the quantitative traits except for panicle length. The genotypic and phenotypic coefficients of variability (GCV & PCV) were high for grain yield ha-1 (24.62 & 24.85%) and filled grains panicle-1 (23.69 & 25.02%). All the traits except days to flowering and maturity, flag leaf breadth, and spikelet fertility exhibited high heritability along with high to moderate genetic advance, indicating the predominant role of additive gene action. Mahalanobis D2 analysis revealed three multi-genotypic and four mono-genotypic clusters of the cultivars. The cultivars' average polyunsaturated fatty acids were 37.9% oleic acid, 39.22% linoleic acid, and 0.5% linolenic acid. The fatty acid profile of Local Joha was superior to the other cultivars as it showed a high level of linoleic and linolenic acid and low saturated fatty acid content. Kon Joha 4 and Ronga Joha contained the highest iron (82.88 mg kg-1) and zinc (47.39 mg kg-1), respectively, while protein content of Kon Joha-1 and amylose content of Harinarayan were the highest. Joha (Bihpuria) showed the highest gel consistency of 140.50 mm. Kalijeera, Kunkuni Joha, Kon Joha-5, Manimuni Joha and Kon Joha-2 accorded a strong aroma. PCR amplified 174 alleles with a mean value of 2.64 across the 66 polymorphic SSR markers. PIC values ranged from 0.091 to 0.698, with an average of 0.326. The highly informative (PIC>0.50) markers were RM316, RM283, RM585, RM1388, RM3562, RM171, R1M30, RM118, RM11and RM29 for identification of the twenty aromatic rice cultivars. The UNJ clustering based on Jaccard's coefficients classified the cultivars into three distinct clusters with eight, ten, and two genotypes. Our study revealed the nutritional richness of these specialty Joha rice cultivars and sufficient scope for yield enhancement through their interbreeding to keep quality intact.


Weed Science ◽  
2009 ◽  
Vol 57 (1) ◽  
pp. 94-102 ◽  
Author(s):  
Vinod K. Shivrain ◽  
Nilda R. Burgos ◽  
David R. Gealy ◽  
Kenneth L. Smith ◽  
Robert C. Scott ◽  
...  

Cultivated rice yield losses due to red rice infestation vary by cultivar, red rice density, and duration of interference. The competition effects of red rice could be influenced further by emergence characteristics, red rice biotype, and planting time of cultivated rice. We aimed to characterize the emergence of red rice biotypes at different planting dates and evaluate the effect of red rice biotype, rice cultivar, and planting date on cultivated rice yield loss. Field experiments were conducted at the Southeast Research and Extension Center, Rohwer, AR, and at the Arkansas Rice Research and Extension Center, Stuttgart, AR, in the summer of 2005 and 2006. The experimental design was a split-split plot with three or four replications. Planting time, ClearfieldTM(CL) rice cultivar, and red rice biotype were the main plot, subplot, and sub-subplot factors, respectively. There were three planting times from mid-April to mid-May at 2-wk intervals. CL rice cultivars, CL161 and hybrid CLXL8, and 12 red rice biotypes were planted. The emergence rate and coefficient of uniformity of germination differed among some red rice biotypes within a planting time. Planting date affected the emergence characteristics of red rice biotypes. The mean emergence rate of red rice was 0.043 d−1in the mid-April planting and 0.058 d−1in the late April planting. For the mid-April planting, 50% of red rice biotypes emerged in 20 ± 2 d compared with 15 ± 2 d for CL rice cultivars. Yield losses due to red rice biotypes generally increased in later planting dates, up to 49%. Yield losses due to interference from red rice biotypes ranged from 14 to 45% and 6 to 35% in CL161 and CLXL8, respectively. Cultivated rice became less competitive with red rice in later plantings, resulting in higher yield losses.


Weed Science ◽  
2009 ◽  
Vol 57 (6) ◽  
pp. 627-643 ◽  
Author(s):  
David R. Gealy ◽  
Hesham A. Agrama ◽  
Georgia C. Eizenga

Weedy red rice is a highly troublesome weed of rice in the United States and throughout the world. Effective management of this weed has remained challenging to U.S. farmers, partly because of the biological diversity among red rice populations, resistance to or avoidance of control measures, and genetic similarities with crop rice that allow crossing between the two plant types. The aim of this research was to identify simple sequence repeat (SSR) marker loci that will unambiguously differentiate between U.S. weedy red rice, commercial rice cultivars, and their hybrids, to characterize the genetic diversity and structure of U.S. weedy red rice accessions in relation to Oryza collections from international sources, and to relate genetic and geographic variability within U.S. weedy red rice. Thirty-one SSR markers were used to analyze 180 worldwide Oryza entries and 80 U.S. weedy red rice and U.S. rice cultivars. Twenty-six of the 31 SSR marker loci were highly informative with respect to genetic distinctions between U.S. weedy red rice and U.S. rice cultivars. U.S. red rice are accessions clustered into two main SSR-based collections, awnless strawhull (SA−) and awned blackhull (BA+), according to genetic distance analysis and principal coordinate analysis. Genetic structure analysis clearly identified SA− and BA+ red rice, rice–red rice hybrids, commercial japonica rice cultivars, indica rice, and a number of international and wild Oryza spp. standards (e.g., Oryza nivara, Oryza rufipogon, and Oryza glaberrima) as genetically distinct groups. U.S. SA− red rice exhibited greater spatial structure than did BA+ in that the genetic makeup of SA− accessions changed nearly twice as much with geographic distance as compared to BA+. However, the overall genetic variability within SA− red rice accessions was less than for BA+ accessions, suggesting that the SA− types may be genetically less compatible than BA+ types with other Oryza plants such as rice or other red rice types present in U.S. rice fields. Several of the awned red rice entries exhibited evidence of natural hybridization with different red rice types. Our results suggest that the SA− and BA+ red rice collections have different genetic backgrounds. SA− accessions generally associated most closely with indica-like red- or white-bran Oryza sativa cultivar standards, while BA+ accessions generally associated more closely with O. nivara or O. nivara–like O. sativa entries. Although the U.S. red rice accessions appear not to have descended directly from introductions of the worldwide Oryza standards analyzed, an Oryza red-pericarp entry from Niger (UA 1012; PI 490783) was genetically very similar to some U.S. BA+ accessions.


Sign in / Sign up

Export Citation Format

Share Document