Does prey size induce head skeleton phenotypic plasticity during early ontogeny in the snake Boa constrictor ?

2005 ◽  
Vol 267 (04) ◽  
pp. 363 ◽  
Author(s):  
Gordon W. Schuett ◽  
David L. Hardy ◽  
Ryan L. Earley ◽  
Harry W. Greene
2019 ◽  
Vol 46 (1) ◽  
pp. 63-74
Author(s):  
Stefano Mattioli

The rediscovery of the original, unedited Latin manuscript of Georg Wilhelm Steller's “De bestiis marinis” (“On marine mammals”), first published in 1751, calls for a new translation into English. The main part of the treatise contains detailed descriptions of four marine mammals, but the introduction is devoted to more general issues, including innovative speculation on morphology, ecology and biogeography, anticipating arguments and concepts of modern biology. Steller noted early that climate and food have a direct influence on body size, pelage and functional traits of mammals, potentially affecting reversible changes (phenotypic plasticity). Feeding and other behavioural habits have an impact on the geographical distribution of mammals. Species with a broad diet tend to have a wide distribution, whereas animals with a narrow diet more likely have only a restricted range. According to Steller, both sea and land then still concealed countless animals unknown to science.


Author(s):  
Dariya Aleksandrovna Gavrilova ◽  
Maria Pavlovna Grushko

The aim of this work was to study peculiarities of mullet morphological organization during early ontogeny. Sample selection was made on board Caspian research and development Institute of Fisheries’ research vessel in period from June to September, 2015 in Russian waters of the Caspian Sea. Larvae aged 10 days could be characterized by heterochrony in the development of major organ systems. Nervous system and sense organs were well developed. The eyeball had all membranes well-differentiated, in the retina all the layers were formed. The olfactory fossae had cells of 3 types: olfactory receptor cells, supporting cells and basal cells. There was observed intensive formation of respiratory, cardiovascular, excretory and digestive systems. The early development of the nervous system and sensory organs of the larvae indicated adaptation of mullet to active life.


Author(s):  
Anna Viktorovna Pirog ◽  
Olga Vladimirovna Lozhnichenko

The study of the growth of blood cells and hemopoietic organs of claravia catfish ( Clarias gariepius ) grown in the closed loop water systems on the basis of "RANTOP AGRO-5" LLC in the Krasnodar region. Test materials (prolarvae and larvae aged 5, 10, 15, 20 and 25 days of active feeding) were selected in the spring-summer period of 2013-2014. Prolarvae in mesenchyma of forming mesonephros which begins to develop after hatching had primordial precursor cell and blast blood cells between forming vesicles. There took place differentiation of erythropoietic cells: erythroblasts, pronormoblasts and basophilic normoblasts. Accumulation of hemoglobin in erythrocytes indicates that since the first day of hatching, the blood starts to perform transport function - transportation of oxygen. The rudiment of thymus was observed in larvae aged 10 days. This organ generated lymphocytepoietic cells. The central hemopoietic organ - spleen - was originally registered as a mesenchymal rudiment at the age of 10 days. At the age of 25 days, development of the organ stroma is not finished in clarid catfish larvae. Reticular tissues develop actively. Separate lymphoid clumps in the spleen structure have not been found. Melano-macrofagic centres are also unformed. Qualitative analysis of haemopoiesis showed that in spleen there take place development of all types of blood cells: erythropoiesis, granulopoiesis and agranulopoiesis.


Sign in / Sign up

Export Citation Format

Share Document