Partial least squares analysis in developmental psychopathology

1989 ◽  
Vol 1 (4) ◽  
pp. 351-371 ◽  
Author(s):  
Robert D. Ketterlinus ◽  
Fred L. Bookstein ◽  
Paul D. Sampson ◽  
Michael E. Lamb

AbstractDespite extensive theoretical and empirical advances in the last two decades, little attention has been paid to the development of statistical techniques suited for the analysis of data gathered in studies of developmental psychopathology. As in most other studies of developmental processes, research in this area often involves complex constructs, such as intelligence and antisocial behavior, measured indirectly using multiple observed indicators. Relations between pairs of such constructs are sometimes reported in terms of latent variables (LVs): linear combinations of the indicators of each construct. We introduce the assumptions and procedures associated with one method for exploring these relations: partial least squares (PLS) analysis, which maximizes covariances between predictor and outcome LVs; its coefficients are correlations between observed variables and LVs, and its LVs are sums of observable variables weighted by these correlations. In the least squares logic of PLS, familiar notions about simple regressions and principal component analyses may be reinterpreted as rules for including or excluding particular blocks in a model and for “splitting” blocks into multiple dimensions. Guidelines for conducting PLS analyses and interpreting their results are provided using data from the Goteborg Daycare Study and the Seattle Longitudinal Prospective Study on Alcohol and Pregnancy. The major advantages of PLS analysis are that it (1) concisely summarizes the intercorrelations among a large number of variables regardless of sample size, (2) yields coefficients that are readily interpretable, and (3) provides straightforward decision rules about modeling. The advantages make PLS a highly desirable technique for use in longitudinal research on developmental psychopathology. The primer is written primarily for the nonstatistician, although formal mathematical details are provided in Appendix 1.

2017 ◽  
Vol 71 (12) ◽  
pp. 2579-2594 ◽  
Author(s):  
Robert Lascola ◽  
Patrick E. O’Rourke ◽  
Edward A. Kyser

We have developed a piecewise local (PL) partial least squares (PLS) analysis method for total plutonium measurements by absorption spectroscopy in nitric acid-based nuclear material processing streams. Instead of using a single PLS model that covers all expected solution conditions, the method selects one of several local models based on an assessment of solution absorbance, acidity, and Pu oxidation state distribution. The local models match the global model for accuracy against the calibration set, but were observed in several instances to be more robust to variations associated with measurements in the process. The improvements are attributed to the relative parsimony of the local models. Not all of the sources of spectral variation are uniformly present at each part of the calibration range. Thus, the global model is locally overfitting and susceptible to increased variance when presented with new samples. A second set of models quantifies the relative concentrations of Pu(III), (IV), and (VI). Standards containing a mixture of these species were not at equilibrium due to a disproportionation reaction. Therefore, a separate principal component analysis is used to estimate of the concentrations of the individual oxidation states in these standards in the absence of independent confirmatory analysis. The PL analysis approach is generalizable to other systems where the analysis of chemically complicated systems can be aided by rational division of the overall range of solution conditions into simpler sub-regions.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 166
Author(s):  
Majed Aljunaid ◽  
Yang Tao ◽  
Hongbo Shi

Partial least squares (PLS) and linear regression methods are widely utilized for quality-related fault detection in industrial processes. Standard PLS decomposes the process variables into principal and residual parts. However, as the principal part still contains many components unrelated to quality, if these components were not removed it could cause many false alarms. Besides, although these components do not affect product quality, they have a great impact on process safety and information about other faults. Removing and discarding these components will lead to a reduction in the detection rate of faults, unrelated to quality. To overcome the drawbacks of Standard PLS, a novel method, MI-PLS (mutual information PLS), is proposed in this paper. The proposed MI-PLS algorithm utilizes mutual information to divide the process variables into selected and residual components, and then uses singular value decomposition (SVD) to further decompose the selected part into quality-related and quality-unrelated components, subsequently constructing quality-related monitoring statistics. To ensure that there is no information loss and that the proposed MI-PLS can be used in quality-related and quality-unrelated fault detection, a principal component analysis (PCA) model is performed on the residual component to obtain its score matrix, which is combined with the quality-unrelated part to obtain the total quality-unrelated monitoring statistics. Finally, the proposed method is applied on a numerical example and Tennessee Eastman process. The proposed MI-PLS has a lower computational load and more robust performance compared with T-PLS and PCR.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lee-Andra Bruwer ◽  
Nkosivile Welcome Madinga ◽  
Nqobile Bundwini

PurposeThe purpose of this paper is to determine the key factors influencing the adoption of grocery shopping and to examine the moderating effect of education between antecedents of the adoption of grocery shopping apps and user attitude and intention to purchase.Design/methodology/approachThis study adopted partial least squares structural equation modeling (PLS-SEM) to evaluate the relationship between the latent variables: perceived usefulness, perceived ease of use, attitude and intention to use grocery shopping apps. Partial least squares multigroup analysis (PLS-MGA) was used to examine the moderating effect of education. A total of 305 grocery shopping apps users were surveyed using a structural questionnaire.FindingsThe results indicated that all the factors considered in the framework were significant in predicting the intention to use the grocery shopping apps. The findings show that education has no significant impact on any relationship.Practical implicationsA better understanding of the factors that affect the acceptance of mobile grocery shopping apps is important for developing better strategic management plans.Originality/valueThis is one of the first studies to research the adoption of grocery shopping apps in a developing country, as well as the first to focus on consumers in South Africa.


2009 ◽  
Vol 51 (2) ◽  
pp. 1-19 ◽  
Author(s):  
Monica Gomez ◽  
Shintaro Okazaki

Despite abundant research that examines the effects of store brands on retail decision making, little attention has been paid to the predictive model of store brand shelf space. This paper intends to fill this research gap by proposing and testing a theoretical model of store brand shelf space. From the literature review, 11 independent variables were identified (i.e. store format, reputation, brand assortment, depth of assortment, in-store promotions, leading national brands’ rivalry, retailers’ rivalry, manufacturers’ concentration, store brand market share, advertising, and innovation) and analysed as potential predictors of the dependent variable (i.e. store brand shelf space). Data were collected for 29 product categories in 55 retail stores. In designing the statistical treatment, a three-phase procedure was adopted: (1) interdependence analysis via principal component analysis; (2) dependence analysis via neural network simulation; and (3) structural equation modelling via partial least squares. The findings corroborate our proposed model, in that all hypothesised relationships and directions are supported. On this basis, we draw theoretical as well as managerial implications. In closing, we acknowledge the limitations of this study and suggest future research directions.


2017 ◽  
Vol 47 (1) ◽  
Author(s):  
Fernanda Gomes da Silveira ◽  
Darlene Ana Souza Duarte ◽  
Lucas Monteiro Chaves ◽  
Fabyano Fonseca e Silva ◽  
Ivan Carvalho Filho ◽  
...  

ABSTRACT: The main application of genomic selection (GS) is the early identification of genetically superior animals for traits difficult-to-measure or lately evaluated, such as meat pH (measured after slaughter). Because the number of markers in GS is generally larger than the number of genotyped animals and these markers are highly correlated owing to linkage disequilibrium, statistical methods based on dimensionality reduction have been proposed. Among them, the partial least squares (PLS) technique stands out, because of its simplicity and high predictive accuracy. However, choosing the optimal number of components remains a relevant issue for PLS applications. Thus, we applied PLS (and principal component and traditional multiple regression) techniques to GS for pork pH traits (with pH measured at 45min and 24h after slaughter) and also identified the optimal number of PLS components based on the degree-of-freedom (DoF) and cross-validation (CV) methods. The PLS method out performs the principal component and traditional multiple regression techniques, enabling satisfactory predictions for pork pH traits using only genotypic data (low-density SNP panel). Furthermore, the SNP marker estimates from PLS revealed a relevant region on chromosome 4, which may affect these traits. The DoF and CV methods showed similar results for determining the optimal number of components in PLS analysis; thus, from the statistical viewpoint, the DoF method should be preferred because of its theoretical background (based on the "statistical information theory"), whereas CV is an empirical method based on computational effort.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1691
Author(s):  
Nikesh Patel ◽  
Kavitha Sivanathan ◽  
Prashant Mhaskar

This paper addresses the problem of quality modeling in polymethyl methacrylate (PMMA) production. The key challenge is handling the large amounts of missing quality measurements in each batch due to the time and cost sensitive nature of the measurements. To this end, a missing data subspace algorithm that adapts nonlinear iterative partial least squares (NIPALS) algorithms from both partial least squares (PLS) and principal component analysis (PCA) is utilized to build a data driven dynamic model. The use of NIPALS algorithms allows for the correlation structure of the input–output data to minimize the impact of the large amounts of missing quality measurements. These techniques are utilized in a simulated case study to successfully model the PMMA process in particular, and demonstrate the efficacy of the algorithm to handle the quality prediction problem in general.


2020 ◽  
Vol 21 (7) ◽  
pp. 2436 ◽  
Author(s):  
Mariangela Kosmopoulou ◽  
Aikaterini F. Giannopoulou ◽  
Aikaterini Iliou ◽  
Dimitra Benaki ◽  
Aristeidis Panagiotakis ◽  
...  

Melanoma is the most aggressive type of skin cancer, leading to metabolic rewiring and enhancement of metastatic transformation. Efforts to improve its early and accurate diagnosis are largely based on preclinical models and especially cell lines. Hence, we herein present a combinational Nuclear Magnetic Resonance (NMR)- and Ultra High Performance Liquid Chromatography-High-Resolution Tandem Mass Spectrometry (UHPLC-HRMS/MS)-mediated untargeted metabolomic profiling of melanoma cells, to landscape metabolic alterations likely controlling metastasis. The cell lines WM115 and WM2664, which belong to the same patient, were examined, with WM115 being derived from a primary, pre-metastatic, tumor and WM2664 clonally expanded from lymph-node metastases. Metabolite samples were analyzed using NMR and UHPLC-HRMS. Multivariate statistical analysis of high resolution NMR and MS (positive and negative ionization) results was performed by Principal Component Analysis (PCA), Partial Least Squares-Discriminant Analysis (PLS-DA) and Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA), while metastasis-related biomarkers were determined on the basis of VIP lists, S-plots and Student’s t-tests. Receiver Operating Characteristic (ROC) curves of NMR and MS data revealed significantly differentiated metabolite profiles for each cell line, with WM115 being mainly characterized by upregulated levels of phosphocholine, choline, guanosine and inosine. Interestingly, WM2664 showed notably increased contents of hypoxanthine, myo-inositol, glutamic acid, organic acids, purines, pyrimidines, AMP, ADP, ATP and UDP(s), thus indicating the critical roles of purine, pyrimidine and amino acid metabolism during human melanoma metastasis.


Sign in / Sign up

Export Citation Format

Share Document