scholarly journals Allen–Cahn equation with strong irreversibility

2018 ◽  
Vol 30 (04) ◽  
pp. 707-755
Author(s):  
GORO AKAGI ◽  
MESSOUD EFENDIEV

This paper is concerned with a fully non-linear variant of the Allen–Cahn equation with strong irreversibility, where each solution is constrained to be non-decreasing in time. The main purposes of this paper are to prove the well-posedness, smoothing effect and comparison principle, to provide an equivalent reformulation of the equation as a parabolic obstacle problem and to reveal long-time behaviours of solutions. More precisely, by derivingpartialenergy-dissipation estimates, a global attractor is constructed in a metric setting, and it is also proved that each solutionu(x,t) converges to a solution of an elliptic obstacle problem ast→ +∞.

2019 ◽  
Vol 22 (02) ◽  
pp. 1950004 ◽  
Author(s):  
Changxing Miao ◽  
Guixiang Xu ◽  
Jianwei-Urbain Yang

By [Formula: see text]-method, the interaction Morawetz estimate, long-time Strichartz estimate and local smoothing effect of Schrödinger operator, we show global well-posedness and scattering for the defocusing Hartree equation [Formula: see text] where [Formula: see text], and [Formula: see text], [Formula: see text], with radial data in [Formula: see text] for [Formula: see text]. It is a sharp global result except the critical case [Formula: see text], which is a very difficult open problem.


2016 ◽  
Vol 12 (8) ◽  
pp. 6452-6462 ◽  
Author(s):  
Penghui Lv ◽  
Jingxin Lu ◽  
Guoguang Lin

The paper studies the long time behavior of solutions to the initial boundary value problem(IBVP) for a class of Kirchhoff models flow  .We establish the well-posedness, theexistence of the global attractor in natural energy space


Author(s):  
Marius Müller

AbstractWe consider a parabolic obstacle problem for Euler’s elastic energy of graphs with fixed ends. We show global existence, well-posedness and subconvergence provided that the obstacle and the initial datum are suitably ‘small’. For symmetric cone obstacles we can improve the subconvergence to convergence. Qualitative aspects such as energy dissipation, coincidence with the obstacle and time regularity are also examined.


2021 ◽  
pp. 1-27
Author(s):  
Ahmad Makki ◽  
Alain Miranville ◽  
Madalina Petcu

In this article, we are interested in the study of the well-posedness as well as of the long time behavior, in terms of finite-dimensional attractors, of a coupled Allen–Cahn/Cahn–Hilliard system associated with dynamic boundary conditions. In particular, we prove the existence of the global attractor with finite fractal dimension.


Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 63 ◽  
Author(s):  
Thomas Meunier ◽  
Claire Ménesguen ◽  
Xavier Carton ◽  
Sylvie Le Gentil ◽  
Richard Schopp

The stability properties of a vortex lens are studied in the quasi geostrophic (QG) framework using the generalized stability theory. Optimal perturbations are obtained using a tangent linear QG model and its adjoint. Their fine-scale spatial structures are studied in details. Growth rates of optimal perturbations are shown to be extremely sensitive to the time interval of optimization: The most unstable perturbations are found for time intervals of about 3 days, while the growth rates continuously decrease towards the most unstable normal mode, which is reached after about 170 days. The horizontal structure of the optimal perturbations consists of an intense counter-shear spiralling. It is also extremely sensitive to time interval: for short time intervals, the optimal perturbations are made of a broad spectrum of high azimuthal wave numbers. As the time interval increases, only low azimuthal wave numbers are found. The vertical structures of optimal perturbations exhibit strong layering associated with high vertical wave numbers whatever the time interval. However, the latter parameter plays an important role in the width of the vertical spectrum of the perturbation: short time interval perturbations have a narrow vertical spectrum while long time interval perturbations show a broad range of vertical scales. Optimal perturbations were set as initial perturbations of the vortex lens in a fully non linear QG model. It appears that for short time intervals, the perturbations decay after an initial transient growth, while for longer time intervals, the optimal perturbation keeps on growing, quickly leading to a non-linear regime or exciting lower azimuthal modes, consistent with normal mode instability. Very long time intervals simply behave like the most unstable normal mode. The possible impact of optimal perturbations on layering is also discussed.


Author(s):  
Michel Molina Del Sol ◽  
Eduardo Arbieto Alarcon ◽  
Rafael José Iorio

In this study, we continue our study of the Cauchy problem associated with the Brinkman equations [see (1.1) and (1.2) below] which model fluid flow in certain types of porous media. Here, we will consider the flow in the upper half-space \[ \mathbb{R}_{+}^{3}=\left\{\left(x,y,z\right) \in\mathbb{R}^{3}\left\vert z\geqslant 0\right.\right\}, \] under the assumption that the plane $z=0$ is impenetrable to the fluid. This means that we will have to introduce boundary conditions that must be attached to the Brinkman equations. We study local and global well-posedness in appropriate Sobolev spaces introduced below, using Kato's theory for quasilinear equations, parabolic regularization and a comparison principle for the solutions of the problem.


2014 ◽  
Vol 66 (5) ◽  
pp. 1110-1142
Author(s):  
Dong Li ◽  
Guixiang Xu ◽  
Xiaoyi Zhang

AbstractWe consider the obstacle problem for the Schrödinger evolution in the exterior of the unit ball with Dirichlet boundary condition. Under radial symmetry we compute explicitly the fundamental solution for the linear Dirichlet Schrödinger propagator and give a robust algorithm to prove sharp L1 → L∞ dispersive estimates. We showcase the analysis in dimensions n = 5, 7. As an application, we obtain global well–posedness and scattering for defocusing energy-critical NLS on with Dirichlet boundary condition and radial data in these dimensions.


2000 ◽  
Vol 09 (01) ◽  
pp. 13-34 ◽  
Author(s):  
GEN YONEDA ◽  
HISA-AKI SHINKAI

Hyperbolic formulations of the equations of motion are essential technique for proving the well-posedness of the Cauchy problem of a system, and are also helpful for implementing stable long time evolution in numerical applications. We, here, present three kinds of hyperbolic systems in the Ashtekar formulation of general relativity for Lorentzian vacuum spacetime. We exhibit several (I) weakly hyperbolic, (II) diagonalizable hyperbolic, and (III) symmetric hyperbolic systems, with each their eigenvalues. We demonstrate that Ashtekar's original equations form a weakly hyperbolic system. We discuss how gauge conditions and reality conditions are constrained during each step toward constructing a symmetric hyperbolic system.


Sign in / Sign up

Export Citation Format

Share Document