scholarly journals Extensional constructive real analysis via locators

Author(s):  
Auke B. Booij

Abstract Real numbers do not admit an extensional procedure for observing discrete information, such as the first digit of its decimal expansion, because every extensional, computable map from the reals to the integers is constant, as is well known. We overcome this by considering real numbers equipped with additional structure, which we call a locator. With this structure, it is possible, for instance, to construct a signed-digit representation or a Cauchy sequence, and conversely, these intensional representations give rise to a locator. Although the constructions are reminiscent of computable analysis, instead of working with a notion of computability, we simply work constructively to extract observable information, and instead of working with representations, we consider a certain locatedness structure on real numbers.

2009 ◽  
Vol 19 (1) ◽  
pp. 59-71
Author(s):  
KLAUS WEIHRAUCH ◽  
YONGCHENG WU ◽  
DECHENG DING

In the representation approach (TTE) to computable analysis, the representations of an algebraic or topological structure for which the basic predicates and functions become computable are of particular interest. There are, however, many predicates (like equality of real numbers) and functions that are absolutely non-computable, that is, not computable for any representation. Many of these results can be deduced from a simple lemma. In this article we prove this lemma for multi-representations and apply it to a number of examples. As applications, we show that various predicates and functions on computable measure spaces are absolutely non-computable. Since all the arguments are topological, we prove that the predicates are not relatively open and the functions are not relatively continuous for any multi-representation.


Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 42
Author(s):  
Yuri N. Lovyagin ◽  
Nikita Y. Lovyagin

This paper lies in the framework of axiomatic non-standard analysis based on the non-standard arithmetic axiomatic theory. This arithmetic includes actual infinite numbers. Unlike the non-standard model of arithmetic, this approach does not take models into account but uses an axiomatic research method. In the axiomatic theory of non-standard arithmetic, hyperrational numbers are defined as triplets of hypernatural numbers. Since the theory of hyperrational numbers and axiomatic non-standard analysis is mainly published in Russian, in this article we give a brief review of its basic concepts and required results. Elementary hyperrational analysis includes defining and evaluating such notions as continuity, differentiability and integral calculus. We prove that a bounded monotonic sequence is a Cauchy sequence. Also, we solve the task of line segment measurement using hyperrational numbers. In fact, this allows us to approximate real numbers using hyperrational numbers, and shows a way to model real numbers and real functions using hyperrational numbers and functions.


2018 ◽  
Vol 85 (3-4) ◽  
pp. 411
Author(s):  
Sangita Saha ◽  
Santanu Roy

In this article, the concept of statistically pre-Cauchy sequence of fuzzy real numbers having multiplicity greater than two defined by Orlicz function is introduced. A characterization of the class of bounded statistically pre-Cauchy triple sequences of fuzzy numbers with the help of Orlicz function is presented. Then a necessary and suffcient condition for a bounded triple sequence of fuzzy real numbers to be statistically pre-Cauchy is proved. Also a necessary and sufficient condition for a bounded triple sequence of fuzzy real numbers to be statistically convergent is derived. Further, a characterization of the class of bounded statistically convergent triple sequences of fuzzy numbers is presented and linked with Cesaro summability.


2021 ◽  
pp. 3-27
Author(s):  
James Davidson

This chapter covers set theory. The topics include set algebra, relations, orderings and mappings, countability and sequences, real numbers, sequences and limits, and set classes including monotone classes, rings, fields, and sigma fields. The final section introduces the basic ideas of real analysis including Euclidean distance, sets of the real line, coverings, and compactness.


2020 ◽  
Vol 12 ◽  
Author(s):  
Masahiro Kumabe ◽  
Kenshi Miyabe ◽  
Yuki Mizusawa ◽  
Toshio Suzuki

The objective of this study is a better understandingof the relationships between reduction and continuity. Solovay reduction is a variation of Turing reduction based on the distance of two real numbers. We characterize Solovay reduction by the existence of a certain real function that is computable (in the sense of computable analysis) and Lipschitz continuous. We ask whether thereexists a reducibility concept that corresponds to H¨older continuity. The answer is affirmative. We introduce quasi Solovay reduction and characterize this new reduction via H¨older continuity. In addition, we separate it from Solovay reduction and Turing reduction and investigate the relationships between complete sets and partial randomness.


2015 ◽  
Vol 26 (7) ◽  
pp. 1196-1233 ◽  
Author(s):  
SYLVIE BOLDO ◽  
CATHERINE LELAY ◽  
GUILLAUME MELQUIOND

In the recent years, numerous proof systems have improved enough to be used for formally verifying non-trivial mathematical results. They, however, have different purposes and it is not always easy to choose which one is adapted to undertake a formalization effort. In this survey, we focus on properties related to real analysis: real numbers, arithmetic operators, limits, differentiability, integrability and so on. We have chosen to look into the formalizations provided in standard by the following systems: Coq, HOL4, HOL Light, Isabelle/HOL, Mizar, ProofPower-HOL, and PVS. We have also accounted for large developments that play a similar role or extend standard libraries: ACL2(r) for ACL2, C-CoRN/MathClasses for Coq, and the NASA PVS library. This survey presents how real numbers have been defined in these various provers and how the notions of real analysis described above have been formalized. We also look at the methods of automation these systems provide for real analysis.


2018 ◽  
Vol 12 (1) ◽  
pp. 97-143 ◽  
Author(s):  
MARCO PANZA ◽  
ANDREA SERENI

AbstractRecent discussions on Fregean and neo-Fregean foundations for arithmetic and real analysis pay much attention to what is called either ‘Application Constraint’ ($AC$) or ‘Frege Constraint’ ($FC$), the requirement that a mathematical theory be so outlined that it immediately allows explaining for its applicability. We distinguish between two constraints, which we, respectively, denote by the latter of these two names, by showing how$AC$generalizes Frege’s views while$FC$comes closer to his original conceptions. Different authors diverge on the interpretation of$FC$and on whether it applies to definitions of both natural and real numbers. Our aim is to trace the origins of$FC$and to explore how different understandings of it can be faithful to Frege’s views about such definitions and to his foundational program. After rehearsing the essential elements of the relevant debate (§1), we appropriately distinguish$AC$from$FC$(§2). We discuss six rationales which may motivate the adoption of different instances of$AC$and$FC$(§3). We turn to the possible interpretations of$FC$(§4), and advance a Semantic$FC$(§4.1), arguing that while it suits Frege’s definition of natural numbers (4.1.1), it cannot reasonably be imposed on definitions of real numbers (§4.1.2), for reasons only partly similar to those offered by Crispin Wright (§4.1.3). We then rehearse a recent exchange between Bob Hale and Vadim Batitzky to shed light on Frege’s conception of real numbers and magnitudes (§4.2). We argue that an Architectonic version of$FC$is indeed faithful to Frege’s definition of real numbers, and compatible with his views on natural ones. Finally, we consider how attributing different instances of$FC$to Frege and appreciating the role of the Architectonic$FC$can provide a more perspicuous understanding of his foundational program, by questioning common pictures of his logicism (§5).


1997 ◽  
Vol 62 (1) ◽  
pp. 197-224
Author(s):  
Kyriakos Kontostathis

The complexity of priority proofs in recursion theory has been growing since the first priority proofs in [1] and [11]. Refined versions of classic priority proofs can be found in [18]. To this date, this part of recursion theory is at about the same stage of development as real analysis was in the early days, when the notions of topology, continuity, compactness, vector space, inner product space, etc., were not invented. There were no general theorems involving these concepts to prove results about the real numbers and the proofs were repetitive and lengthy.The priority method contains an unprecedent wealth of combinatorics which is used to answer questions in recursion theory and is bound to have applications in many other fields as well. Unfortunately, very little progress has been made in finding theorems to formulate the combinatorial part of the priority method so as to answer questions without having to reprove the combinatorics in each case.Lempp and Lerman in [10] provide an overview of the subject. The entire edifice of definitions and theorems which formulate the combinatorics of the priority method has acquired the name Priority Theory. From a different vein, Groszek and Slaman in [2] have initiated a program to classify priority constructions in terms of how much induction or collection is needed to carry them out. This program studies the complexity of priority proofs and can be called Complexity Theory of Priority Proofs or simply Complexity.


Sign in / Sign up

Export Citation Format

Share Document