scholarly journals Triangle-degrees in graphs and tetrahedron coverings in 3-graphs

Author(s):  
Victor Falgas-Ravry ◽  
Klas Markström ◽  
Yi Zhao

Abstract We investigate a covering problem in 3-uniform hypergraphs (3-graphs): Given a 3-graph F, what is c1(n, F), the least integer d such that if G is an n-vertex 3-graph with minimum vertex-degree $\delta_1(G)>d$ then every vertex of G is contained in a copy of F in G? We asymptotically determine c1(n, F) when F is the generalized triangle $K_4^{(3)-}$ , and we give close to optimal bounds in the case where F is the tetrahedron $K_4^{(3)}$ (the complete 3-graph on 4 vertices). This latter problem turns out to be a special instance of the following problem for graphs: Given an n-vertex graph G with $m> n^2/4$ edges, what is the largest t such that some vertex in G must be contained in t triangles? We give upper bound constructions for this problem that we conjecture are asymptotically tight. We prove our conjecture for tripartite graphs, and use flag algebra computations to give some evidence of its truth in the general case.

10.37236/6900 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Konrad Engel ◽  
Sebastian Hanisch

Let $n,k,b$ be integers with $1 \le k-1 \le b \le n$ and let $G_{n,k,b}$ be the graph whose vertices are the $k$-element subsets $X$ of $\{0,\dots,n\}$ with $\mathrm{max}(X)-\mathrm{min}(X) \le b$ and where two such vertices $X,Y$ are joined by an edge if $\mathrm{max}(X \cup Y) - \mathrm{min}(X \cup Y) \le b$. These graphs are generated by applying a transformation to maximal $k$-uniform hypergraphs of bandwidth $b$ that is used to reduce the (weak) edge clique covering problem to a vertex clique covering problem. The bandwidth of $G_{n,k,b}$ is thus the largest possible bandwidth of any transformed $k$-uniform hypergraph of bandwidth $b$. For $b\geq \frac{n+k-1}{2}$, the exact bandwidth of these graphs is determined. Moreover, the bandwidth is determined asymptotically for $b=o(n)$ and for $b$ growing linearly in $n$ with a factor $\beta \in (0,1]$, where for one case only bounds could be found. It is conjectured that the upper bound of this open case is the right asymptotic value.


2019 ◽  
Vol 29 (2) ◽  
pp. 190-199
Author(s):  
Omer Angel ◽  
Abbas Mehrabian ◽  
Yuval Peres

AbstarctFor a rumour spreading protocol, the spread time is defined as the first time everyone learns the rumour. We compare the synchronous push&pull rumour spreading protocol with its asynchronous variant, and show that for any n-vertex graph and any starting vertex, the ratio between their expected spread times is bounded by $O({n^{1/3}}{\log ^{2/3}}n)$. This improves the $O(\sqrt n)$ upper bound of Giakkoupis, Nazari and Woelfel (2016). Our bound is tight up to a factor of O(log n), as illustrated by the string of diamonds graph. We also show that if, for a pair α, β of real numbers, there exist infinitely many graphs for which the two spread times are nα and nβ in expectation, then $0 \le \alpha \le 1$ and $\alpha \le \beta \le {1 \over 3} + {2 \over 3} \alpha $; and we show each such pair α, β is achievable.


2004 ◽  
Vol 14 (05n06) ◽  
pp. 677-702 ◽  
Author(s):  
V. S. GUBA

We study some properties of the Cayley graph of R. Thompson's group F in generators x0, x1. We show that the density of this graph, that is, the least upper bound of the average vertex degree of its finite subgraphs is at least 3. It is known that a 2-generated group is not amenable if and only if the density of the corresponding Cayley graph is strictly less than 4. It is well known this is also equivalent to the existence of a doubling function on the Cayley graph. This means there exists a mapping from the set of vertices into itself such that for some constant K>0, each vertex moves by a distance at most K and each vertex has at least two preimages. We show that the density of the Cayley graph of a 2-generated group does not exceed 3 if and only if the group satisfies the above condition with K=1. Besides, we give a very easy formula to find the length (norm) of a given element of F in generators x0, x1. This simplifies the algorithm by Fordham. The length formula may be useful for finding the general growth function of F in generators x0, x1 and the growth rate of this function. In this paper, we show that the growth rate of F has a lower bound of [Formula: see text].


2012 ◽  
Vol 21 (4) ◽  
pp. 611-622 ◽  
Author(s):  
A. KOSTOCHKA ◽  
M. KUMBHAT ◽  
T. ŁUCZAK

A colouring of the vertices of a hypergraph is called conflict-free if each edge e of contains a vertex whose colour does not repeat in e. The smallest number of colours required for such a colouring is called the conflict-free chromatic number of , and is denoted by χCF(). Pach and Tardos proved that for an (2r − 1)-uniform hypergraph with m edges, χCF() is at most of the order of rm1/r log m, for fixed r and large m. They also raised the question whether a similar upper bound holds for r-uniform hypergraphs. In this paper we show that this is not necessarily the case. Furthermore, we provide lower and upper bounds on the minimum number of edges of an r-uniform simple hypergraph that is not conflict-free k-colourable.


1994 ◽  
Vol 3 (4) ◽  
pp. 429-434 ◽  
Author(s):  
Rudolf Ahlswede ◽  
Ning Cai

In [1] we introduced and studied for product hypergraphs where ℋi = (i,ℰi), the minimal size π(ℋn) of a partition of into sets that are elements of . The main result was thatif the ℋis are graphs with all loops included. A key step in the proof concerns the special case of complete graphs. Here we show that (1) also holds when the ℋi are complete d-uniform hypergraphs with all loops included, subject to a condition on the sizes of the i. We also present an upper bound on packing numbers.


10.37236/8627 ◽  
2019 ◽  
Vol 26 (4) ◽  
Author(s):  
Yi Zhang ◽  
Yi Zhao ◽  
Mei Lu

Let $n, s$ be positive integers such that $n$ is sufficiently large and $s\le n/3$. Suppose $H$ is a 3-uniform hypergraph of order $n$ without isolated vertices. If $\deg(u)+\deg(v) > 2(s-1)(n-1)$ for any two vertices $u$ and $v$ that are contained in some edge of $H$, then $H$ contains a matching of size $s$. This degree sum condition is best possible and confirms a conjecture of the authors [Electron. J. Combin. 25 (3), 2018], who proved the case when $s= n/3$.


2019 ◽  
Vol 29 (1) ◽  
pp. 128-136 ◽  
Author(s):  
Bo Ning ◽  
Xing Peng

AbstractThe famous Erdős–Gallai theorem on the Turán number of paths states that every graph with n vertices and m edges contains a path with at least (2m)/n edges. In this note, we first establish a simple but novel extension of the Erdős–Gallai theorem by proving that every graph G contains a path with at least $${{(s + 1){N_{s + 1}}(G)} \over {{N_s}(G)}} + s - 1$$ edges, where Nj(G) denotes the number of j-cliques in G for 1≤ j ≤ ω(G). We also construct a family of graphs which shows our extension improves the estimate given by the Erdős–Gallai theorem. Among applications, we show, for example, that the main results of [20], which are on the maximum possible number of s-cliques in an n-vertex graph without a path with ℓ vertices (and without cycles of length at least c), can be easily deduced from this extension. Indeed, to prove these results, Luo [20] generalized a classical theorem of Kopylov and established a tight upper bound on the number of s-cliques in an n-vertex 2-connected graph with circumference less than c. We prove a similar result for an n-vertex 2-connected graph with circumference less than c and large minimum degree. We conclude this paper with an application of our results to a problem from spectral extremal graph theory on consecutive lengths of cycles in graphs.


Author(s):  
Fazal Hayat

The first multiplicative Zagreb index [Formula: see text] of a graph [Formula: see text] is the product of the square of every vertex degree, while the second multiplicative Zagreb index [Formula: see text] is the product of the products of degrees of pairs of adjacent vertices. In this paper, we give sharp lower bound for [Formula: see text] and upper bound for [Formula: see text] of trees with given distance [Formula: see text]-domination number, and characterize those trees attaining the bounds.


2009 ◽  
Vol 23 (2) ◽  
pp. 732-748 ◽  
Author(s):  
Hip Hàn ◽  
Yury Person ◽  
Mathias Schacht

Sign in / Sign up

Export Citation Format

Share Document