minimum degree
Recently Published Documents


TOTAL DOCUMENTS

822
(FIVE YEARS 203)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Vol 309 ◽  
pp. 229-239
Author(s):  
Guy Kortsarz ◽  
Zeev Nutov

2022 ◽  
Vol 417 ◽  
pp. 126782
Author(s):  
Michael A. Henning ◽  
Monika Pilśniak ◽  
Elżbieta Tumidajewicz

2022 ◽  
Vol 2022 ◽  
pp. 1-4
Author(s):  
Muhammad Kamran Jamil ◽  
Aisha Javed ◽  
Ebenezer Bonyah ◽  
Iqra Zaman

The first general Zagreb index M γ G or zeroth-order general Randić index of a graph G is defined as M γ G = ∑ v ∈ V d v γ where γ is any nonzero real number, d v is the degree of the vertex v and γ = 2 gives the classical first Zagreb index. The researchers investigated some sharp upper and lower bounds on zeroth-order general Randić index (for γ < 0 ) in terms of connectivity, minimum degree, and independent number. In this paper, we put sharp upper bounds on the first general Zagreb index in terms of independent number, minimum degree, and connectivity for γ . Furthermore, extremal graphs are also investigated which attained the upper bounds.


2022 ◽  
Author(s):  
Vojtĕch Dvorák ◽  
Peter Hintum ◽  
Amy Shaw ◽  
Marius Tiba
Keyword(s):  

Author(s):  
Mingzu Zhang ◽  
Xiaoli Yang ◽  
Xiaomin He ◽  
Zhuangyan Qin ◽  
Yongling Ma

The [Formula: see text]-dimensional augmented cube [Formula: see text], proposed by Choudum and Sunitha in 2002, is one of the most famous interconnection networks of the distributed parallel system. Reliability evaluation of underlying topological structures is vital for fault tolerance analysis of this system. As one of the most extensively studied parameters, the [Formula: see text]-conditional edge-connectivity of a connected graph [Formula: see text], [Formula: see text], is defined as the minimum number of the cardinality of the edge-cut of [Formula: see text], if exists, whose removal disconnects this graph and keeps each component of [Formula: see text] having minimum degree at least [Formula: see text]. Let [Formula: see text], [Formula: see text] and [Formula: see text] be three integers, where [Formula: see text], if [Formula: see text] and [Formula: see text], if [Formula: see text]. In this paper, we determine the exact value of the [Formula: see text]-conditional edge-connectivity of [Formula: see text], [Formula: see text] for each positive integer [Formula: see text] and [Formula: see text], and give an affirmative answer to Shinde and Borse’s corresponding conjecture on this topic in [On edge-fault tolerance in augmented cubes, J. Interconnection Netw. 20(4) (2020), DOI:10.1142/S0219265920500139].


Author(s):  
Peter Allen ◽  
Julia Böttcher ◽  
Julia Ehrenmüller ◽  
Jakob Schnitzer ◽  
Anusch Taraz

Abstract The bandwidth theorem of Böttcher, Schacht and Taraz states that any n-vertex graph G with minimum degree $\big(\tfrac{k-1}{k}+o(1)\big)n$ contains all n-vertex k-colourable graphs H with bounded maximum degree and bandwidth o(n). Recently, a subset of the authors proved a random graph analogue of this statement: for $p\gg \big(\tfrac{\log n}{n}\big)^{1/\Delta}$ a.a.s. each spanning subgraph G of G(n,p) with minimum degree $\big(\tfrac{k-1}{k}+o(1)\big)pn$ contains all n-vertex k-colourable graphs H with maximum degree $\Delta$ , bandwidth o(n), and at least $C p^{-2}$ vertices not contained in any triangle. This restriction on vertices in triangles is necessary, but limiting. In this paper, we consider how it can be avoided. A special case of our main result is that, under the same conditions, if additionally all vertex neighbourhoods in G contain many copies of $K_\Delta$ then we can drop the restriction on H that $Cp^{-2}$ vertices should not be in triangles.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3209
Author(s):  
Jelena Sedlar ◽  
Riste Škrekovski

A locally irregular graph is a graph in which the end vertices of every edge have distinct degrees. A locally irregular edge coloring of a graph G is any edge coloring of G such that each of the colors induces a locally irregular subgraph of G. A graph G is colorable if it allows a locally irregular edge coloring. The locally irregular chromatic index of a colorable graph G, denoted by χirr′(G), is the smallest number of colors used by a locally irregular edge coloring of G. The local irregularity conjecture claims that all graphs, except odd-length paths, odd-length cycles and a certain class of cacti are colorable by three colors. As the conjecture is valid for graphs with a large minimum degree and all non-colorable graphs are vertex disjoint cacti, we study rather sparse graphs. In this paper, we give a cactus graph B which contradicts this conjecture, i.e., χirr′(B)=4. Nevertheless, we show that the conjecture holds for unicyclic graphs and cacti with vertex disjoint cycles.


2021 ◽  
Vol vol. 23, no. 3 (Graph Theory) ◽  
Author(s):  
Ke Liu ◽  
Mei Lu

Let $H=(V,F)$ be a simple hypergraph without loops. $H$ is called linear if $|f\cap g|\le 1$ for any $f,g\in F$ with $f\not=g$. The $2$-section of $H$, denoted by $[H]_2$, is a graph with $V([H]_2)=V$ and for any $ u,v\in V([H]_2)$, $uv\in E([H]_2)$ if and only if there is $ f\in F$ such that $u,v\in f$. The treewidth of a graph is an important invariant in structural and algorithmic graph theory. In this paper, we consider the treewidth of the $2$-section of a linear hypergraph. We will use the minimum degree, maximum degree, anti-rank and average rank of a linear hypergraph to determine the upper and lower bounds of the treewidth of its $2$-section. Since for any graph $G$, there is a linear hypergraph $H$ such that $[H]_2\cong G$, we provide a method to estimate the bound of treewidth of graph by the parameters of the hypergraph.


Sign in / Sign up

Export Citation Format

Share Document