The Use of Moiré Patterns in TEM Images to Measure Precipitate Composition in Al-Si-Ge Alloys
Moiré patterns are commonly formed in multiphase system when diffracting planes of similar spacing and orientation lead to interference effects. They can be used experimentally to evaluate the stress distribution in materials [1], to analyze orientation relationships and latttice strain in diffraction contrast microscopy, or, combined with the related geometrical phase technique, to analyze displacements in high resolution lattice images [2,3]. The interpretation of moiré fringes is often not straightforward due to the elastic interaction between the crystals at the interface and the dynamical nature of electron diffraction [4]. However, if the two lattices are fully relaxed, or if a small precipitate crystal is embedded in a large matrix, moiré patterns can give a simple and direct measure of orientation and lattice constants. in the present work, the moiré technique has been applied to the quantitative analysis of lath-shaped Ge or Ge-Si precipitates in Al with the aim to determine the composition (the Si:Ge ratio) from the lattice parameter indicated by the moiré fringes.