Assembling many chemical components into a material in a controlled manner is one of the biggest challenges in chemistry. Particularly porous materials with multivariate character within their scaffolds are expected to demonstrate synergistic properties. In this study, we show a synthetic strategy to construct porous networks with multiple chemical components. By taking advantage of the hierarchical nature of a colloidal system based on metal-organic polyhedra (MOPs), we developed a two-step assembly process to form colloidal networks; assembling of MOPs with the organic linker to the formation of MOP network as a colloidal particle, followed by further connecting colloids by additional crosslinkers, leading to colloidal networks. This synthetic process allows not only for the use of different organic linkers for connecting MOPs and colloidal particles, respectively, but for assembling different colloidal particles formed by various MOPs. The proof-of-concept of this tuneable multivariate colloidal gel system offers an alternative to developing functional porous soft materials with multifunction.