In Situ Observation of Nanocrystal Formation Via Dehydroxylation

2001 ◽  
Vol 7 (S2) ◽  
pp. 438-439
Author(s):  
Renu Sharma ◽  
M. J. McKelvy ◽  
Hamdallah Bearat ◽  
Andrew V.G. Chizmeshya ◽  
R.W. Carpenter

Recently, a promising new route to prepare nano phase composites with fine transition metal particles (2 - 50nm) has been proposed via dehydroxylation and dehydration process. Thermal and mechanical dehydroxylation process has also been used to form ultra fine powders of NiO-Ni(OH). We have found a substantially increased carbonation rate at room temperature (RT) for partially dehydroxylated brucite (Mg(OH)2) single crystal fragments. BET measurements confirm the increase in the surface area of partially dehydroxylated (90%) single-crystal Mg(OH)2 fragments, which directly contributes to the increase in carbonation reactivity. As dehydroxylation proceeds rapidly in a TEM column, due to high vacuum and electron beam effects, the atomic level nature of the process has not been understood until recently.6 We have observed the development of nanocrystals during in situdehydroxylation of Mg(OH)2.Experiments were performed using a PHILIPS-430 electron microscope operated at 300KV, fitted with a differentially pumped environmental-cell (E-cell) and a Gatan Imaging Filter (GIF).

Author(s):  
L. E. Murr ◽  
G. Wong

Palladium single-crystal films have been prepared by Matthews in ultra-high vacuum by evaporation onto (001) NaCl substrates cleaved in-situ, and maintained at ∼ 350° C. Murr has also produced large-grained and single-crystal Pd films by high-rate evaporation onto (001) NaCl air-cleaved substrates at 350°C. In the present work, very large (∼ 3cm2), continuous single-crystal films of Pd have been prepared by flash evaporation onto air-cleaved (001) NaCl substrates at temperatures at or below 250°C. Evaporation rates estimated to be ≧ 2000 Å/sec, were obtained by effectively short-circuiting 1 mil tungsten evaporation boats in a self-regulating system which maintained an optimum load current of approximately 90 amperes; corresponding to a current density through the boat of ∼ 4 × 104 amperes/cm2.


Author(s):  
K. Fukushima ◽  
N. Kohyama ◽  
A. Fukami

A film-sealed high resolution environmental cell(E.C) for observing hydrated materials had been developed by us(l). Main specification of the E.C. is as follows: 1) Accelerated voltage; 100 kV. 2) Gas in the E.C.; saturated water vapour with carrier gas of 50 Torr. 3) Thickness of gas layer; 50 μm. 4) Sealing film; evaporated carbon film(20 nm thick) with plastic microgrid. 5) Resolving power; 1 nm. 6) Transmittance of electron beam; 60% at 100 kV. The E.C. had been successfully applied to the study of hydrated halloysite(2) (3). Kaolin minerals have no interlayer water and are basically non-expandable but form intercalation compounds with some specific chemicals such as hydrazine, formamide and etc. Because of these compounds being mostly changed in vacuum, we tried to reveal the structure changes between in wet air and in vacuum of kaolin minerals intercalated with hydrazine and of hydrated state of montmori1lonite using the E.C. developed by us.


2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Bo Fu ◽  
Gaohang He ◽  
Wenxiang Mu ◽  
Yang Li ◽  
Boyuan Feng ◽  
...  

We designed an original and effective method to study the laser damage mechanism of β-Ga2O3 single crystal grown by edge-defined film-fed growth (EFG). The structure destruction under high light field...


2019 ◽  
Vol 79 ◽  
pp. 02002
Author(s):  
Shangshu Wu ◽  
Zhou Yu ◽  
Junjie Wang ◽  
Hanxin Zhang ◽  
Chaoqun Pei ◽  
...  

The preparation of nanocrystalline aluminum (NC Al) was conducted in two steps. After the NC Al powder was synthesized by an Inert gas condensation (IGC) method in a helium atmosphere of 500 Pa, the NC Al powder was in-situ compacted into a pellet with a 10 mm diameter and 250 μm-300 μm thickness in a high vacuum (10-6 Pa-10-7 Pa) at room temperature. The NC Al samples were not exposed to air during the entire process. After the pressure reached 6 GPa, the relative density could reach 99.83%. The results showed that the grain size decreased with the increased of in-situ forming pressure. The NC Al samples present obvious ductile fracture, and the tensile properties were greatly changed with the increase of forming pressure.


2018 ◽  
Vol 941 ◽  
pp. 1463-1467
Author(s):  
Ryotaro Hara ◽  
Masaki Tahara ◽  
Tomonari Inamura ◽  
Hideki Hosoda

The stress-induced martensitic transformation and slip deformation behavior were investigated by the compression test with anin-situobservation in a Ti-6Mo-10Al (mol %) alloy single crystal. Owing to the stress-induced martensitic transformation from the parent β phase to the α′′ martensite phase, the single crystal of α′′ martensite without internal twinnings was successfully obtained at room temperature. By further compression, the slip deformation occurred in the single crystal of α′′ martensite. The operated slip system in the α′′ martensite was analyzed by the two face trace analyses, and the slip direction was determined to be []o.


Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1007
Author(s):  
Hao Yang ◽  
Jishen Jiang ◽  
Zhuozheng Wang ◽  
Xianfeng Ma ◽  
Jiajun Tu ◽  
...  

The fatigue fracture mechanism of a nickel-based single crystal (NBSC) superalloy with recrystallized grains was studied at 550 °C by in situ observation with a scanning electron microscope (SEM) for the first time. Multiple crack initiations associated with recrystallized grain boundaries and carbides were observed. By analysis of the slip traces and crack propagation planes, the operated slip systems were identified to be octahedral for both single crystal substrate and recrystallized grains. Distinct crystallographic fractures dominated, accompanied by recrystallized grain boundary associated crack initiations. This is different from the widely reported solely intergranular cracking at high temperature. Fatigue crack growth rate curves showed evident fluctuation, due to the interaction of fatigue cracks with local microstructures and the crack coalescence mechanism. Both the recrystallized grains and the competition between different slip systems were responsible for the deceleration and acceleration of fatigue microstructurally small crack behavior.


1998 ◽  
Vol 4 (S2) ◽  
pp. 316-317
Author(s):  
D. N. Leonard ◽  
P.E. Russell

Atomic force microscopy (AFM) was introduced in 1984, and proved to be more versatile than scanning tunneling microscopy (STM) due to the AFM's capabilities to scan non-conductive samples under atmospheric conditions and achieve atomic resolution. Ultra high vacuum (UHV) AFM has been used in surface science applications when control of oxidation and corrosion of a sample's surface are required. Expensive equipment and time consuming sample exchanges are two drawbacks of the UHV AFM system that limit its use. Until recently, no hot/cryo-stage, moderate vacuum, controlled gas environment AFM was commonly available.We have demonstrated that phase transformations are easily observable in metal alloys and polymers with the use of a moderate vacuum AFM that has in-situ heating/cooling capabilities and quick (within minutes) sample exchange times. This talk will describe the results of experiments involving a wide range of samples designed to make use of the full capabilities of a hot/cryo-stage, controlled gas environment AFM.


Sign in / Sign up

Export Citation Format

Share Document