scholarly journals An infinite family of Williamson matrices

1977 ◽  
Vol 24 (2) ◽  
pp. 252-256 ◽  
Author(s):  
Edward Spence

AbstractIn this paper the following result is proved. Suppose there exists a C-matrix of order n + 1. Then if n≡1 (mod 4) there exists a Hadamard matrix of order 2nr(n + 1), while if n≡3 (mod 4) there exists a Hadamard matrix of order nr(n + 1) for all r ≧0. If n≡1 (mod 4) is a prime power, the method is adapted to prove the existence of a Hadamard matrix of the Williamson type, of order 2nr(n + 1), for all r ≧0.

1975 ◽  
Vol 27 (3) ◽  
pp. 555-560 ◽  
Author(s):  
Edward Spence

1. Introduction. We prove, using a theorem of M. Hall on cyclic projective planes, that if g is a prime power such that either 1 + q + q2 is a prime congruent to 3, 5 or 7 (mod 8) or 3 + 2q + 2q2 is a prime power, then there exists a skew-Hadamard matrix of the Goethals-Seidel type of order 4(1 + q + q2). (A Hadamard matrix H is said to be of skew type if one of H + I, H — lis skew symmetric. ) If 1 + q + q2 is a prime congruent to 1 (mod 8), then a Hadamard matrix, not necessarily of skew type, of order 4(1 + q + q2) is constructed. The smallest new Hadamard matrix obtained has order 292.


Filomat ◽  
2020 ◽  
Vol 34 (3) ◽  
pp. 815-834
Author(s):  
Adda Farouk ◽  
Qing-Wen Wang

An n x n matrix whose entries are from the set {1,-1} is called a Hadamard matrix if HH? = nIn. The Hadamard conjecture states that if n is a multiple of four then there always exists Hadamard matrices of this order. But their construction remain unknown for many orders. In this paper we construct Hadamard matrices of order 2q(q + 1) from known Hadamard matrices of order 2(q + 1), where q is a power of a prime number congruent to 1 modulo 4. We show then two ways to construct them. This work is a continuation of U. Scarpis? in [7] and Dragomir-Z. Dokovic?s in [10].


10.37236/4397 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
M. Abreu ◽  
G. Araujo-Pardo ◽  
C. Balbuena ◽  
D. Labbate

In this note we construct a new infinite family of $(q-1)$-regular graphs of girth 8 and order $2q(q-1)^2$ for all prime powers $q\geq 16$, which are the smallest known so far whenever $q-1$ is not a prime power or a prime power plus one itself.


1971 ◽  
Vol 23 (3) ◽  
pp. 531-535 ◽  
Author(s):  
Richard J. Turyn

A C-matrix is a square matrix of order m + 1 which is 0 on the main diagonal, has ±1 entries elsewhere and satisfies . Thus, if , I + C is an Hadamard matrix of skew type [3; 6] and, if , iI + C is a (symmetric) complex Hadamard matrix [4]. For m > 1, we must have . Such matrices arise from the quadratic character χ in a finite field, when m is an odd prime power, as [χ(ai – aj)] suitably bordered, and also from some other constructions, in particular those of skew type Hadamard matrices. (For we must have m = a2 + b2, a, b integers.)


Author(s):  
Noboru Ito

AbstractThe purpose of this note is to determine the automorphism group of the doubly regular tournament of Szekeres type, and to use it to show that the corresponding skew Hadamard matrix H of order 2(q + 1), where q ≡5(mod 8) and q > 5, is not equivalent to the skew Hadamard matrix H(2q + 1) of quadratic residue type when 2q + 1 is a prime power.


Author(s):  
Mieko Yamada

AbstractThe purpose of this paper is to prove (1) if q ≡ 1 (mod 8) is a prime power and there exists a Hadamard matrix of order (q − 1)/2, then we can construct a Hadamard matrix of order 4q, (2) if q ≡ 5 (mod 8) is a prime power and there exists a skew-Hadamard matrix of order (q + 3)/2, then we can construct a Hadamard matrix of order 4(q + 2), (3) if q ≡ 1 (mod 8) is a prime power and there exists a symmetric C-matrix of order (q + 3)/2, then we can construct a Hadamard matrix of order 4(q + 2).We have 36, 36 and 8 new orders 4n for n ≤ 10000, of Hadamard matrices from the first, the second and third theorem respectively, which were known to the list of Geramita and Seberry. We prove these theorems by using an adaptation of generalized quaternion type array and relative Gauss sums.


10.37236/1479 ◽  
1999 ◽  
Vol 7 (1) ◽  
Author(s):  
H. Kharaghani

Let $4n^2$ be the order of a Bush-type Hadamard matrix with $q=(2n-1)^2$ a prime power. It is shown that there is a weighing matrix $$ W(4(q^m+q^{m-1}+\cdots+q+1)n^2,4q^mn^2) $$ which includes two symmetric designs with the Ionin–type parameters $$ \nu=4(q^m+q^{m-1}+\cdots+q+1)n^2,\;\;\; \kappa=q^m(2n^2-n), \;\;\; \lambda=q^m(n^2-n) $$ for every positive integer $m$. Noting that Bush–type Hadamard matrices of order $16n^2$ exist for all $n$ for which an Hadamard matrix of order $4n$ exist, this provides a new class of symmetric designs.


2015 ◽  
Vol 22 (03) ◽  
pp. 1550017 ◽  
Author(s):  
Maarten Havinga

The main result of this paper is a construction for complex Hadamard matrices: for [Formula: see text] any prime power and [Formula: see text] the size of a real Hadamard matrix, this construction yields a family of complex Hadamard matrices of order [Formula: see text] with [Formula: see text] parameters, including Butson-type matrices of even type [Formula: see text] a divisor of [Formula: see text]. Only a few lowdimensional examples and the real Hadamard matrices obtained by this construction are already known. Also a small extension of Diţa’s construction (cf. Lemma 1) is given.


10.37236/1545 ◽  
2000 ◽  
Vol 8 (1) ◽  
Author(s):  
Anthony Bonato ◽  
W. H. Holzmann ◽  
Hadi Kharaghani

A graph is $3$-e.c. if for every $3$-element subset $S$ of the vertices, and for every subset $T$ of $S$, there is a vertex not in $S$ which is joined to every vertex in $T$ and to no vertex in $S\setminus T$. Although almost all graphs are $3$-e.c., the only known examples of strongly regular $3$-e.c. graphs are Paley graphs with at least $29$ vertices. We construct a new infinite family of $3$-e.c. graphs, based on certain Hadamard matrices, that are strongly regular but not Paley graphs. Specifically, we show that Bush-type Hadamard matrices of order $16n^2$ give rise to strongly regular $3$-e.c. graphs, for each odd $n$ for which $4n$ is the order of a Hadamard matrix.


Sign in / Sign up

Export Citation Format

Share Document