scholarly journals The Needs and Requirements from the Standpoint of the Ultraviolet Solar Observations

1968 ◽  
Vol 1 ◽  
pp. 538-540
Author(s):  
E.M. Reeves

Extending from the present to the early part of 1969 there are three Orbiting Solar Observatories to be launched, and these will all be capable of constructing spectroheliograms of the Sun in solar emission lines of the EUV and X-ray region. The recently launched and highly successful OSO-III has obtained EUV and X-ray spectra with high-time resolution, but without spatial resolution on the solar disk. The later OSO satellites will provide spatial resolution of 1′ of arc to 30″ of arc, and will provide the basis for the extension to even higher spatial resolution in the future.The comparatively short periods covered by these satellites, coupled with a real probability of only partial success, make it particularly important to obtain the fullest possible use of the data by implementing a complementary and simultaneous series of ground-based observations.

1980 ◽  
Vol 86 ◽  
pp. 123-126
Author(s):  
Keizo Kai

We have constructed a 17GHz interferometer of a multi-correlator type at the Nobeyama Solar Radio Observatory. Novel features of the new interferometer are summarized as (i) high time-resolution up to 0.8 s and (ii) “real-time” calibration of the whole system with an accuracy of ~ 2% for amplitudes and ~ 2° for phases. With the aid of these advantages over an interferometer of a conventional drift-scan type we are able to detect and follow rapid time variations of even a faint source (say, ~ 0.5 s.f.u.) on the Sun with a spatial resolution of ~ 40″. The interferometer has been put in operation since July 1978. We have recorded hundreds of bursts at 17GHz in a year including some tens of rapidly changing sources which would not precisely be measured so far. We present here some preliminary results of observations such as polarization structures of both rapidly changing and GRF bursts.


2015 ◽  
Vol 22 (5) ◽  
pp. 1202-1206 ◽  
Author(s):  
Bernhard W. Adams ◽  
Anil U. Mane ◽  
Jeffrey W. Elam ◽  
Razib Obaid ◽  
Matthew Wetstein ◽  
...  

X-ray detectors that combine two-dimensional spatial resolution with a high time resolution are needed in numerous applications of synchrotron radiation. Most detectors with this combination of capabilities are based on semiconductor technology and are therefore limited in size. Furthermore, the time resolution is often realised through rapid time-gating of the acquisition, followed by a slower readout. Here, a detector technology is realised based on relatively inexpensive microchannel plates that uses GHz waveform sampling for a millimeter-scale spatial resolution and better than 100 ps time resolution. The technology is capable of continuous streaming of time- and location-tagged events at rates greater than 107events per cm2. Time-gating can be used for improved dynamic range.


1987 ◽  
Vol 93 ◽  
pp. 613-624
Author(s):  
M. Mouchet ◽  
S.F. Van Amerongen ◽  
J.M. Bonnet-Bidaud ◽  
J.P. Osborne

AbstractWe present high-time resolution spectroscopy of two AM Her sources E1405−451 and E1013−477. For E1405−451, the Balmer emission lines profiles can be divided into a narrow component and a broad one. The amplitudes of the radial velocity curves of these components are respectively 265±30 km/s and 390±50 km/s. The orientation of the column determined from polarimetry is not compatible with the broad component being formed in the lowest parts of the column. Photometric and spectroscopic results on E1013−477 do not confirm the previous reported 103 min. period. Rapid variability (<1.5h) as well as long term modulation (>3.3h) is present in these data.


1996 ◽  
Vol 154 ◽  
pp. 225-228
Author(s):  
Pradeep Gothoskar ◽  
A. Pramesh Rao

AbstractWe have carried out a program of continuous Interplanetary Scintillation (IPS) monitoring of the interplanetary activity using Ooty Radio Telescope (ORT). From May 1990 to March 1991, during the 22nd solar maximum, a few radio sources were monitored to provide long stretches of IPS data with a high-time resolution of few minutes. These observations covered 0.3 to 0.8 AU region (12° to 70° elongations) around the sun at several heliographic latitudes. During the observation, we detected 33 short-time scale IPS events which had significant variation in the scintillation index and solar wind velocity. These were considered to be due to travelling interplanetary disturbances.A multi-component model of plasma density enhancement was developed to estimate the geometry and physical properties of these IPS events. Detailed analysis of 20 of these events suggests, 1. fast IPS events were interplanetary signatures of Coronal Mass Ejections (CMEs), 2. the average mass and energy of these events was ~ 1016 gm and 1033 erg respectively, 3. 80% of IPS events were associated with X-ray flares on the sun and 50% were associated with geomagnetic activity at earth. Detailed study of the multi-component model suggests IPS observations at smaller elongations (hence at higher radio frequencies) are more suited to detect fast-moving interplanetary disturbances such as produced by CMEs.


2015 ◽  
Vol 86 (7) ◽  
pp. 073512 ◽  
Author(s):  
Ami M. DuBois ◽  
John David Lee ◽  
Abdulgadar F. Almagri

1988 ◽  
Vol 20 (1) ◽  
pp. 102-106
Author(s):  
L.E. Cram

Studies of the global (spatially unresolved) output from the sun are important for two main reasons: (1) the global solar output directed towards the earth plays a central role in solar-terrestrial relations, and (2) global solar observations form a link between (neccessarily) global observations of stars and the more refined spatially resolved observations which are available for the sun. This report covers both aspects (insofar as they concern the sun), using the time-scales of various phenomena as a basic distinguishing characteristic. Note that certain studies of spatially unresolved solar output have not been discussed, since they are actually directed toward the investigation of phenomena of strictly limited spatial extent [e.g. radiospectrograph observations (e.g. Wiehl et al. 1985) and studies of X-ray bursts (e.g. Thomas et al. 1985)]. Collections of relevant papers may be found in De Jager and Svestka (1985) and Labonte et al. (1984), while a review of germane stellar work is available in Baliunas and Vaughan (1985) and solar-terrestrial work in Donnelly and Heath (1985). A comprehensive summary of the subject by Hudson will appear soon in Review of Geophysics and Planetary Physics.


Sign in / Sign up

Export Citation Format

Share Document