scholarly journals Chromospheric and Coronal Spectra

1995 ◽  
Vol 10 ◽  
pp. 580-582
Author(s):  
Carole Jordan

The interpretation of chromospheric and coronal spectra requires accurate ionization and recombination rates, collision strengths and transition probabilities. Recent projects to improve calculations of opacities in stellar interiors have led to a large amount of new atomic data. Some current and potential applications of atomic data to chromospheric and coronal spectra are mentioned below.Strong chromospheric lines are optically thick, and the solution of the radiative transfer equations can depend on atomic data for other species contributing to the background opacity. Many lines in the spectra of stars with hot coronae are excited by electron collisions, but in the cooler non-coronal giants radiative processes involving the H Lyman α and β lines become more important (see Jordan 1988a). Photo-ionization rates from ground configuration excited terms and oscillator strengths to high levels are still needed.Fe II is an important ion producing emission lines in stellar chromospheres. Several excitation mechanisms contribute to the observed spectra (Jordan 1988b). Permitted lines to the ground term and low lying metastable terms have high optical depths and transfer photons to spin forbidden lines sharing a common upper level (e.g. mults. uv 1 and uv 3 transfer photons to mults. uv 32 and 61). Line intensity ratios yield the optical depth in the optically thick lines. The strong H Ly α line in cool giants and supergiants excites high levels in Fe II, resulting in strong decays in multiplets such as uv 391 and 399. A large number of f-values are required to interpret the lines formed by these radiative processes. Nahar & Pradhan (1994) have published some results from the Opacity Project, calculated by using the close coupling method and observed energy levels (which introduce some allowance for relativistic effects). In most cases these f-values agree with experimental results and the calculations by Kurucz (1988) to within 10%. The latter are still needed for the interpretation of stellar uv spectra because of the treatment of spin-forbidden lines.

2021 ◽  
Vol 502 (3) ◽  
pp. 3780-3799
Author(s):  
W Li ◽  
A M Amarsi ◽  
A Papoulia ◽  
J Ekman ◽  
P Jönsson

ABSTRACT Accurate atomic data are essential for opacity calculations and for abundance analyses of the Sun and other stars. The aim of this work is to provide accurate and extensive results of energy levels and transition data for C i–iv. The Multiconfiguration Dirac–Hartree–Fock and relativistic configuration interaction methods were used in this work. To improve the quality of the wavefunctions and reduce the relative differences between length and velocity forms for transition data involving high Rydberg states, alternative computational strategies were employed by imposing restrictions on the electron substitutions when constructing the orbital basis for each atom and ion. Transition data, for example, weighted oscillator strengths and transition probabilities, are given for radiative electric dipole (E1) transitions involving levels up to 1s22s22p6s for C i, up to 1s22s27f for C ii, up to 1s22s7f for C iii, and up to 1s28g for C iv. Using the difference between the transition rates in length and velocity gauges as an internal validation, the average uncertainties of all presented E1 transitions are estimated to be 8.05 per cent, 7.20 per cent, 1.77 per cent, and 0.28 per cent, respectively, for C i–iv. Extensive comparisons with available experimental and theoretical results are performed and good agreement is observed for most of the transitions. In addition, the C i data were employed in a re-analysis of the solar carbon abundance. The new transition data give a line-by-line dispersion similar to the one obtained when using transition data that are typically used in stellar spectroscopic applications today.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Betül Karaçoban ◽  
Leyla Özdemir

The transition parameters such as the wavelengths, weighted oscillator strengths, and transition probabilities (or rates) for the nd (n=5−9)−nf (n=4−8), nd (n=5−9)−np (n=6−9), np (n=6−9)−ns (n=6−10), and ng (n=5−8)−nf (n=4−8) electric dipole (E1) transitions of doubly ionized lanthanum (La III, Z=57) have been calculated using the relativistic Hartree-Fock (HFR) method. In this method, configuration interaction and relativistic effects have been included in the computations combined with a least squares fitting of the Hamiltonian eigenvalues to the observed energy levels. We have compared the results obtained from this work with the previously available calculations and experiments in literature. We have also reported new transitions with the weighted transition probabilities greater than or equal to 105.


2014 ◽  
Vol 92 (3) ◽  
pp. 177-183 ◽  
Author(s):  
Man Mohan ◽  
Sunny Aggarwal ◽  
Narendra Singh

Energy levels, lifetimes, and wavefunction compositions have been calculated for all levels of odd parity 3s23p5 ground configuration as well as 3s3p6 and 3s23p43d even parity excited configurations in highly charged Cl-like tungsten ion. Transition probabilities, oscillator strengths, and line strengths for E1, E2, M1, and M2 transitions have been obtained using the fully relativistic multiconfiguration Dirac–Fock (MCDF) approach including the correlations within the n = 3 complex, some n = 3 → n = 4 single and double excitations and Breit and quantum electrodynamics effects. For comparison from our calculated energy levels, we have also calculated the energy levels by using the fully relativistic flexible atomic code (FAC). The validity of the method is assessed by comparison with previously published experimental and theoretical data. The excellent agreement observed between our calculated results and those obtained using different approaches confirm the accuracy of our results. Additionally, we have predicted some new atomic data for W57+ that are not available so far and may be important for plasma diagnostic analysis in fusion plasma.


2015 ◽  
Vol 93 (5) ◽  
pp. 487-495 ◽  
Author(s):  
Arun Goyal ◽  
Indu Khatri ◽  
Sunny Aggarwal ◽  
A.K. Singh ◽  
Man Mohan

Energy levels, wavefunction compositions, and lifetimes are computed for all levels of 4s24p5, 4s24p44d, and 4s4p6 configurations in Br-like ions (Z = 47–50). We use the multiconfigurational Dirac–Fock method to generate the wavefunctions. We also present the transition wavelengths, oscillator strengths, transition probabilities, and line strengths for the electric dipole (E1) transition from the ground state configuration. We compare our calculated results with the available data in the literature and good agreement is obtained, which confirms the quality of our results. Moreover, we predict some new atomic data that have not been available so far and may be important for plasma diagnostic analysis in fusion plasma.


2020 ◽  
Vol 643 ◽  
pp. A156
Author(s):  
W. Li ◽  
H. Hartman ◽  
K. Wang ◽  
P. Jönsson

Aims. Accurate atomic data for Ti II are essential for abundance analyses in astronomical objects. The aim of this work is to provide accurate and extensive results of oscillator strengths and lifetimes for Ti II. Methods. The multiconfiguration Dirac–Hartree–Fock and relativistic configuration interaction (RCI) methods, which are implemented in the general-purpose relativistic atomic structure package GRASP2018, were used in the present work. In the final RCI calculations, the transverse-photon (Breit) interaction, the vacuum polarisation, and the self-energy corrections were included. Results. Energy levels and transition data were calculated for the 99 lowest states in Ti II. Calculated excitation energies are found to be in good agreement with experimental data from the Atomic Spectra Database of the National Institute of Standards and Technology based on the study by Huldt et al. Lifetimes and transition data, for example, line strengths, weighted oscillator strengths, and transition probabilities for radiative electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2) transitions, are given and extensively compared with the results from previous calculations and measurements, when available. The present theoretical results of the oscillator strengths are, overall, in better agreement with values from the experiments than the other theoretical predictions. The computed lifetimes of the odd states are in excellent agreement with the measured lifetimes. Finally, we suggest a relabelling of the 3d2(12D)4p y2 D3/2o and z2 P3/2o levels.


2018 ◽  
Vol 96 (12) ◽  
pp. 1359-1364
Author(s):  
Güldem Ürer

Studying hydrogenic ions with high Z is an occasion to understand atomic structure. It also provides a reliable test of methods used to determine atomic structures. Many fields and applications require precise atomic data. For this reason, a hydrogen-like study is performed for lawrencium (Lr102+, Z = 103). The energy levels of hydrogen-like lawrencium are calculated with both multiconfiguration Hartree–Fock (MCHF) and multiconfiguration Dirac–Fock (MCDF) methods. The calculations contain Breit–Pauli relativistic corrections in MCHF calculation and the transverse photon and quantum electrodynamics (QED) effects in MCDF calculation along with electron correlations. In addition, some transition parameters (wavelengths, λ, logarithmic weighted oscillator strengths, log(gf) value, and transition probabilities, Aki) for allowed (E1) and forbidden (E2 and M1) transitions are investigated. The results from this study are compared with only a few theoretical works, but there is no available experimental data yet for Lr102+.


1982 ◽  
Vol 37 (8) ◽  
pp. 744-751
Author(s):  
H. P. Saha ◽  
E. Trefftz

Atomic data have been obtained for the coronal ion S XII using the UCL program codes. Energy levels and radiative transition probabilities have been computed with different target descriptions allowing for configuration interaction and relativistic effects. Multi-configuration Hartree-Fock method is used to calculate the target wave functions. Collisional excitation cross sections between the 2 s2 2 p 2P0, 2s2p2 4P, 2D, 2S, 2P and the 2p34S0, 2D0, 2P0 eigenstates of S XII have been calculated using eight-state close coupling and distorted wave approximations with a target description employing a 3̄̄̄d̅ pseudo orbital. Collision strengths between the lowest five eigenstates of S XII have also been computed in five-state close coupling and distorted wave approximations for comparison. The results are compared with available theoretical work. It is found that the use of elaborate target wave functions and the choice of a more accurate scattering approximation may change the cross sections by more than 25% in some of the transitions


2005 ◽  
Vol 13 ◽  
pp. 668-671
Author(s):  
Sultana N. Nahar

AbstractLarge amount of new radiative atomic data for I) energy levels, II) oscillator strengths (f), line strengths (S), radiative transition probabilities (A), III) photoioniztion cross sections (σPI) – total and level-specific, and IV) unified total and level-specific electron-ion recombination rate coefficients, αR, including radiative and dielectronic recombination (RR and DR) are reported for various astrophysical applications. Most of the data are with fine structure. These data are not yet available from any databases. Photoionization and recombination data are self-consistent, using the same wave-function for both processes.


1971 ◽  
Vol 2 ◽  
pp. 503-508
Author(s):  
M. J. Seaton

In the present review I will discuss certain rather general aspects of the theory, and will leave it to other speakers to describe the results of detailed calculations. Further references to recent work are given in the Report of IAU Commission 14.1. Atomic Wave Functions and Energy LevelsIn order to calculate data of importance for ultra-violet and X-ray astronomy - wavelengths, transition probabilities, collision cross-sections, ionization and recombination rates, and line-broadening parameters - it is necessary to begin with the calculation of atomic wave functions. The interest is mainly in highly ionized systems.


Sign in / Sign up

Export Citation Format

Share Document