scholarly journals New Radiative Atomic Data

2005 ◽  
Vol 13 ◽  
pp. 668-671
Author(s):  
Sultana N. Nahar

AbstractLarge amount of new radiative atomic data for I) energy levels, II) oscillator strengths (f), line strengths (S), radiative transition probabilities (A), III) photoioniztion cross sections (σPI) – total and level-specific, and IV) unified total and level-specific electron-ion recombination rate coefficients, αR, including radiative and dielectronic recombination (RR and DR) are reported for various astrophysical applications. Most of the data are with fine structure. These data are not yet available from any databases. Photoionization and recombination data are self-consistent, using the same wave-function for both processes.

1995 ◽  
Vol 10 ◽  
pp. 570-571
Author(s):  
M.J. Seaton

Astronomers require the following basic atomic data: energy levels and wavelengths’, radiative transition probabilities; cross sections for photo-ionisation and for collisional processes; and line profile parameters. They also require processed data such as: level populations; opacities; radiation forces; line emissivities; and collisional rate-coefficients.Many of the data used by astronomers come from theoretical work. Experimental work is of importance in determining accurate wavelengths, in providing essential checks on theory for radiative probabilities and collision rates, and in the determination of line-profile parameters. Experimental studies are particularly important for processes of collisional ionisation.


Galaxies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 90 ◽  
Author(s):  
Catherine Ramsbottom ◽  
Connor Ballance ◽  
Ryan Smyth ◽  
Andrew Conroy ◽  
Luis Fernández-Menchero ◽  
...  

The spectra currently emerging from modern ground- and space-based astronomical instruments are of exceptionally high quality and resolution. To meaningfully analyse these spectra, researchers utilise complex modelling codes to replicate the observations. The main inputs to these codes are atomic data such as excitation and photoionisation cross sections, as well as radiative transition probabilities, energy levels, and line strengths. In this publication, the current capabilities of the numerical methods and computer packages used in the generation of these data are discussed. Particular emphasis is given to Fe-peak species and the heavy systems of tungsten and molybdenum. Some of the results presented to highlight certain issues and/or advances have already been published in the literature, while other sections present new recently evaluated atomic data for the first time.


Atoms ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 68
Author(s):  
Sultana Nahar

The online atomic database of NORAD-Atomic-Data, where NORAD stands for Nahar OSU Radiative, is part of the data sources of the two international collaborations of the Opacity Project (OP) and the Iron Project (IP). It contains large sets of parameters for the dominant atomic processes in astrophysical plasmas, such as, (i) photo-excitation, (ii) photoionization, (iii) electron–ion recombination, (iv) electron–impact excitations. The atomic parameters correspond to tables of energy levels, level-specific total photoionization cross-sections, partial photoionization cross-sections of all bound states for leaving the residual ion in the ground state, partial cross-sections of the ground state for leaving the ion in various excited states, total level-specific electron–ion recombination rate coefficients that include both the radiative and dielectronic recombination, total recombination rate coefficients summed from contributions of an infinite number of recombined states, total photo-recombination cross-sections and rates with respect to photoelectron energy, transition probabilities, lifetimes, collision strengths. The database was created after the first two atomic databases, TOPbase under the OP and TIPbase under the IP. Hence the contents of NORAD-Atomic-Data are either new or from repeated calculations using a much larger wave function expansion making the data more complete. The results have been obtained from the R-matrix method using the close-coupling approximation developed under the OP and IP, and from atomic structure calculations using the program SUPERSTRUCTURE. They have been compared with available published results which have been obtained theoretically and experimentally, and are expected to be of high accuracy in general. All computations were carried out using the computational facilities at the Ohio Supercomputer Center (OSC) starting in 1990. At present it contains atomic data for 154 atomic species, 98 of which are lighter atomic species with nuclear charge Z ≤ 28 and 56 are heavier ones with Z > 28. New data are added with publications.


2011 ◽  
Vol 89 (4) ◽  
pp. 379-385 ◽  
Author(s):  
N.C. Sterling ◽  
M.C. Witthoeft ◽  
D.A. Esteves ◽  
R.C. Bilodeau ◽  
A.L.D. Kilcoyne ◽  
...  

Investigations of neutron(n)-capture element nucleosynthesis and chemical evolution have largely been based on stellar spectroscopy. However, the recent detection of these elements in several planetary nebulae (PNe) indicates that nebular spectroscopy is a promising new tool for such studies. In PNe, n-capture element abundance determinations reveal details of s-process nucleosynthesis and convective mixing in evolved low-mass stars, as well as the chemical evolution of elements that cannot be detected in stellar spectra. Only one or two ions of a given trans-iron element can typically be detected in individual nebulae. Elemental abundance determinations thus require corrections for the abundances of unobserved ions. Such corrections rely on the availability of atomic data for processes that control the ionization equilibrium of nebulae (e.g., photoionization cross sections and rate coefficients for various recombination processes). Until recently, these data were unknown for virtually all n-capture element ions. For the first six ions of Se, Kr, and Xe — the three most widely detected n-capture elements in PNe — we are calculating photoionization cross sections and radiative and dielectronic recombination rate coefficients using the multi-configuration Breit–Pauli atomic structure code AUTOSTRUCTURE. Charge transfer rate coefficients are being determined with a multichannel Landau–Zener code. To calibrate these calculations, we have measured absolute photoionization cross sections of Se and Xe ions at the Advanced Light Source synchrotron radiation facility. These atomic data can be incorporated into photoionization codes, which we will use to derive ionization corrections (hence abundances) for Se, Kr, and Xe in ionized nebulae. Using Monte Carlo simulations, we will investigate the effects of atomic data uncertainties on the derived abundances, illuminating the systems and atomic processes that require further analysis. These results are critical for honing nebular spectroscopy into a more effective tool for investigating the production and chemical evolution of trans-iron elements in the Universe.


Author(s):  
Catherine Ramsbottom ◽  
Connor Ballance ◽  
Ryan Smyth ◽  
Andrew Conroy ◽  
Luis Fernández-Menchero ◽  
...  

The spectra currently emerging from modern ground- and space-based astronomical instruments are of exceptionally high quality and resolution. To meaningfully analyse these spectra researchers utilise complex modelling codes to replicate the observations. The main inputs to these codes are atomic data such as excitation and photoionisation cross sections as well as radiative transition probabilities, energy levels and line strengths. In this publication the current capabilities of the numerical methods and computer packages used in the generation of these data are discussed. Particular emphasis is given to Fe-peak species and the heavy systems of tungsten and molybdenum. Some of the results presented to highlight certain issues and/or advances have already been published in the literature, while other sections present, for the first time, new recently evaluated atomic data.


2021 ◽  
Vol 502 (3) ◽  
pp. 3780-3799
Author(s):  
W Li ◽  
A M Amarsi ◽  
A Papoulia ◽  
J Ekman ◽  
P Jönsson

ABSTRACT Accurate atomic data are essential for opacity calculations and for abundance analyses of the Sun and other stars. The aim of this work is to provide accurate and extensive results of energy levels and transition data for C i–iv. The Multiconfiguration Dirac–Hartree–Fock and relativistic configuration interaction methods were used in this work. To improve the quality of the wavefunctions and reduce the relative differences between length and velocity forms for transition data involving high Rydberg states, alternative computational strategies were employed by imposing restrictions on the electron substitutions when constructing the orbital basis for each atom and ion. Transition data, for example, weighted oscillator strengths and transition probabilities, are given for radiative electric dipole (E1) transitions involving levels up to 1s22s22p6s for C i, up to 1s22s27f for C ii, up to 1s22s7f for C iii, and up to 1s28g for C iv. Using the difference between the transition rates in length and velocity gauges as an internal validation, the average uncertainties of all presented E1 transitions are estimated to be 8.05 per cent, 7.20 per cent, 1.77 per cent, and 0.28 per cent, respectively, for C i–iv. Extensive comparisons with available experimental and theoretical results are performed and good agreement is observed for most of the transitions. In addition, the C i data were employed in a re-analysis of the solar carbon abundance. The new transition data give a line-by-line dispersion similar to the one obtained when using transition data that are typically used in stellar spectroscopic applications today.


2003 ◽  
Vol 209 ◽  
pp. 325-334
Author(s):  
Sultana N. Nahar

A hot central star illuminating the surrounding ionized H II region usually produces very rich atomic spectra resulting from basic atomic processes: photoionization, electron-ion recombination, bound-bound radiative transitions, and collisional excitation of ions. Precise diagnostics of nebular spectra depend on accurate atomic parameters for these processes. Latest developments in theoretical computations are described, especially under two international collaborations known as the Opacity Project (OP) and the Iron Project (IP), that have yielded accurate and large-scale data for photoionization cross sections, transition probabilities, and collision strengths for electron impact excitation of most astrophysically abundant ions. As an extension of the two projects, a self-consistent and unified theoretical treatment of photoionization and electron-ion recombination has been developed where both the radiative and the dielectronic recombination processes are considered in an unified manner. Results from the Ohio State atomic-astrophysics group, and from the OP and IP collaborations, are presented. A description of the electronic web-interactive database, TIPTOPBASE, with the OP and the IP data, and a compilation of recommended data for effective collision strengths, is given.


1995 ◽  
Vol 10 ◽  
pp. 580-582
Author(s):  
Carole Jordan

The interpretation of chromospheric and coronal spectra requires accurate ionization and recombination rates, collision strengths and transition probabilities. Recent projects to improve calculations of opacities in stellar interiors have led to a large amount of new atomic data. Some current and potential applications of atomic data to chromospheric and coronal spectra are mentioned below.Strong chromospheric lines are optically thick, and the solution of the radiative transfer equations can depend on atomic data for other species contributing to the background opacity. Many lines in the spectra of stars with hot coronae are excited by electron collisions, but in the cooler non-coronal giants radiative processes involving the H Lyman α and β lines become more important (see Jordan 1988a). Photo-ionization rates from ground configuration excited terms and oscillator strengths to high levels are still needed.Fe II is an important ion producing emission lines in stellar chromospheres. Several excitation mechanisms contribute to the observed spectra (Jordan 1988b). Permitted lines to the ground term and low lying metastable terms have high optical depths and transfer photons to spin forbidden lines sharing a common upper level (e.g. mults. uv 1 and uv 3 transfer photons to mults. uv 32 and 61). Line intensity ratios yield the optical depth in the optically thick lines. The strong H Ly α line in cool giants and supergiants excites high levels in Fe II, resulting in strong decays in multiplets such as uv 391 and 399. A large number of f-values are required to interpret the lines formed by these radiative processes. Nahar & Pradhan (1994) have published some results from the Opacity Project, calculated by using the close coupling method and observed energy levels (which introduce some allowance for relativistic effects). In most cases these f-values agree with experimental results and the calculations by Kurucz (1988) to within 10%. The latter are still needed for the interpretation of stellar uv spectra because of the treatment of spin-forbidden lines.


2014 ◽  
Vol 92 (3) ◽  
pp. 177-183 ◽  
Author(s):  
Man Mohan ◽  
Sunny Aggarwal ◽  
Narendra Singh

Energy levels, lifetimes, and wavefunction compositions have been calculated for all levels of odd parity 3s23p5 ground configuration as well as 3s3p6 and 3s23p43d even parity excited configurations in highly charged Cl-like tungsten ion. Transition probabilities, oscillator strengths, and line strengths for E1, E2, M1, and M2 transitions have been obtained using the fully relativistic multiconfiguration Dirac–Fock (MCDF) approach including the correlations within the n = 3 complex, some n = 3 → n = 4 single and double excitations and Breit and quantum electrodynamics effects. For comparison from our calculated energy levels, we have also calculated the energy levels by using the fully relativistic flexible atomic code (FAC). The validity of the method is assessed by comparison with previously published experimental and theoretical data. The excellent agreement observed between our calculated results and those obtained using different approaches confirm the accuracy of our results. Additionally, we have predicted some new atomic data for W57+ that are not available so far and may be important for plasma diagnostic analysis in fusion plasma.


Sign in / Sign up

Export Citation Format

Share Document