Imaging Mechanisms in Dynamic Force Microscopy of Polymers
Applications of scanning force microscopy (SFM) in polymer studies have flourished in this decade, reflecting (a) sensitivity to both structure and properties on the nanometer scale, and (b) ease of operation in ambient environments without sample pretreatment. One drawback in SFM of soft materials has been damage incurred during the imaging process. The problem was alleviated by the development of dynamic force microscopy (DFM) in which the probe spends little or no time in contact with the polymer surface and shear forces are minimized. This mode of operation has been dubbed "tapping", "intermittent contact", "non-contact", "near-contact", etc. As studies proliferated, it became apparent that different researchers were using different terms to refer to the same apparent imaging mechanism, or the same term to refer to different imaging mechanisms.