Quantitative Analysis and High-Resolution X-ray Mapping with a Field Emission Electron Microprobe

2013 ◽  
Vol 21 (3) ◽  
pp. 10-15 ◽  
Author(s):  
C. Hombourger ◽  
M. Outrequin

The electron probe microanalyzer (EPMA) provides quantitative analysis for nearly all chemical elements with a spatial resolution of analysis about ~1 μm, which is relevant to microstructures in a wide variety of materials and mineral specimens. Recent implementation of the Schottky emitter field-emission gun (FEG) electron source in the EPMA has significantly improved the spatial resolution and detectability of the EPMA technique.

1998 ◽  
Vol 4 (S2) ◽  
pp. 274-275
Author(s):  
E. A. Kenik ◽  
S. X. Ren

Whereas the spatial resolution for standard secondary electron (SEI) imaging in a scanning electron microscope or electron probe microanalyzer is related to the incident probe diameter, the spatial resolution for x-ray microanalysis is related to the convolution of the probe diameter with the spatial extent of the analyzed volume for a point probe. The latter is determined by electron scattering in the specimen and the subsequent emission of excited x-rays from the specimen. As such, it is possible that “What you see is not what you get”. This is especially true for instruments with high brightness electron sources (field emission). This problem is compounded by probe aberrations which at Gaussian image focus can produce significant electron tails extending tens of microns from the center of the probe.


1998 ◽  
Vol 4 (S2) ◽  
pp. 190-191
Author(s):  
Patrick Echlin

Although high resolution (2nm), low voltage (lkV), SEM of bio-organic materials can now be performed more or less routinely using instruments fitted with a field emission source, virtually no low voltage x-ray microanalysis has been carried out on this type of specimen. Boyes and Nockolds showed that quantitative microanalytical information could be obtained from polished inorganic samples at a spatial resolution of l00nm at 5kV and Johnson et al obtained similar type of data at a spatial resolution of 150nm at 3kV. High spatial resolution (l0nm) microanalysis can be achieved in frozen dried or chemically compromised sections of biological material examined at high voltage in the TEM but frozen hydrated chemically unfixed sections are damaged. The other approach is to use the SEM with frozen hydrated, chemically uncompromised samples, usually at about 10-15kV, in order to obtain sufficient signal from the elements of interest which typically lie in the range Na (Z=l 1) to Ca (Z=20).


Author(s):  
R. Hutchings ◽  
I.P. Jones ◽  
M.H. Loretto ◽  
R.E. Smallman

There is increasing interest in X-ray microanalysis of thin specimens and the present paper attempts to define some of the factors which govern the spatial resolution of this type of microanalysis. One of these factors is the spreading of the electron probe as it is transmitted through the specimen. There will always be some beam-spreading with small electron probes, because of the inevitable beam divergence associated with small, high current probes; a lower limit to the spatial resolution is thus 2αst where 2αs is the beam divergence and t the specimen thickness.In addition there will of course be beam spreading caused by elastic and inelastic interaction between the electron beam and the specimen. The angle through which electrons are scattered by the various scattering processes can vary from zero to 180° and it is clearly a very complex calculation to determine the effective size of the beam as it propagates through the specimen.


Author(s):  
J. R. Michael

X-ray microanalysis in the analytical electron microscope (AEM) refers to a technique by which chemical composition can be determined on spatial scales of less than 10 nm. There are many factors that influence the quality of x-ray microanalysis. The minimum probe size with sufficient current for microanalysis that can be generated determines the ultimate spatial resolution of each individual microanalysis. However, it is also necessary to collect efficiently the x-rays generated. Modern high brightness field emission gun equipped AEMs can now generate probes that are less than 1 nm in diameter with high probe currents. Improving the x-ray collection solid angle of the solid state energy dispersive spectrometer (EDS) results in more efficient collection of x-ray generated by the interaction of the electron probe with the specimen, thus reducing the minimum detectability limit. The combination of decreased interaction volume due to smaller electron probe size and the increased collection efficiency due to larger solid angle of x-ray collection should enhance our ability to study interfacial segregation.


Author(s):  
Matthew T. Johnson ◽  
Ian M. Anderson ◽  
Jim Bentley ◽  
C. Barry Carter

Energy-dispersive X-ray spectrometry (EDS) performed at low (≤ 5 kV) accelerating voltages in the SEM has the potential for providing quantitative microanalytical information with a spatial resolution of ∼100 nm. In the present work, EDS analyses were performed on magnesium ferrite spinel [(MgxFe1−x)Fe2O4] dendrites embedded in a MgO matrix, as shown in Fig. 1. spatial resolution of X-ray microanalysis at conventional accelerating voltages is insufficient for the quantitative analysis of these dendrites, which have widths of the order of a few hundred nanometers, without deconvolution of contributions from the MgO matrix. However, Monte Carlo simulations indicate that the interaction volume for MgFe2O4 is ∼150 nm at 3 kV accelerating voltage and therefore sufficient to analyze the dendrites without matrix contributions.Single-crystal {001}-oriented MgO was reacted with hematite (Fe2O3) powder for 6 h at 1450°C in air and furnace cooled. The specimen was then cleaved to expose a clean cross-section suitable for microanalysis.


Author(s):  
Y. Sato ◽  
T. Hashimoto ◽  
M. Ichihashi ◽  
Y. Ueki ◽  
K. Hirose ◽  
...  

Analytical TEMs have two variations in x-ray detector geometry, high and low angle take off. The high take off angle is advantageous for accuracy of quantitative analysis, because the x rays are less absorbed when they go through the sample. The low take off angle geometry enables better sensitivity because of larger detector solid angle.Hitachi HF-2000 cold field emission TEM has two versions; high angle take off and low angle take off. The former allows an energy dispersive x-ray detector above the objective lens. The latter allows the detector beside the objective lens. The x-ray take off angle is 68° for the high take off angle with the specimen held at right angles to the beam, and 22° for the low angle take off. The solid angle is 0.037 sr for the high angle take off, and 0.12 sr for the low angle take off, using a 30 mm2 detector.


1999 ◽  
Vol 5 (S2) ◽  
pp. 78-79
Author(s):  
C. Merlet ◽  
X. Llovet ◽  
F. Salvat

Studies of x-ray emission from thin films on substrates using an electron probe microanalyzer (EPMA) provide useful information on the characteristics of x-ray generation by electron beams. In this study, EPMA measurements of multilayered samples were performed in order to test and improve analytical and numerical models used for quantitative EPMA. These models provide relatively accurate results for samples consisting of layers with similar average atomic numbers, because of their similar properties regarding electron transport and x-ray generation. On the contrary, these models find difficulties to describe the process when the various layers have very different atomic numbers. In a previous work, we studied the surface ionization of thin copper films of various thicknesses deposited on substrates with very different atomic numbers. In the present communication, the study is extended to the case of multilayered specimens.The studied specimens consisted of thin copper films deposited on a carbon layer which, in turn, was placed on a variety of single-element substrates, ranging from Be to Bi.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1721
Author(s):  
Heon Yong Jeong ◽  
Hyung San Lim ◽  
Ju Hyuk Lee ◽  
Jun Heo ◽  
Hyun Nam Kim ◽  
...  

The effect of scintillator particle size on high-resolution X-ray imaging was studied using zinc tungstate (ZnWO4) particles. The ZnWO4 particles were fabricated through a solid-state reaction between zinc oxide and tungsten oxide at various temperatures, producing particles with average sizes of 176.4 nm, 626.7 nm, and 2.127 μm; the zinc oxide and tungsten oxide were created using anodization. The spatial resolutions of high-resolution X-ray images, obtained from utilizing the fabricated particles, were determined: particles with the average size of 176.4 nm produced the highest spatial resolution. The results demonstrate that high spatial resolution can be obtained from ZnWO4 nanoparticle scintillators that minimize optical diffusion by having a particle size that is smaller than the emission wavelength.


Sign in / Sign up

Export Citation Format

Share Document