scholarly journals The Galaxy and its stellar halo - insights from a hybrid cosmological approach

2008 ◽  
Vol 4 (S254) ◽  
pp. 423-428
Author(s):  
Gabriella De Lucia ◽  
Amina Helmi

AbstractWe use a series of high-resolution N-body simulations of a ‘Milky-Way’ halo, coupled to semi-analytic techniques, to study the formation of our own Galaxy and of its stellar halo. Our model Milky Way galaxy is a relatively young system whose physical properties are in quite good agreement with observational determinations. In our model, the stellar halo is mainly formed from a few massive satellites accreted early on during the galaxy's lifetime. The stars in the halo do not exhibit any metallicity gradient, but higher metallicity stars are more centrally concentrated than stars with lower abundances. This is due to the fact that the most massive satellites contributing to the stellar halo are also more metal rich, and dynamical friction drags them closer to the inner regions of the host halo.

1983 ◽  
Vol 100 ◽  
pp. 23-26
Author(s):  
E. Brinks

The first results of a new high resolution 21-cm HI line survey of M31 made with the Westerbork Synthesis Radio Telescope are presented. Five areas were mapped, covering the galaxy except for the extreme northern and southern parts, at a resolution of δα × δδ × δV = 24″ × 36″ × 3.2 km s−1. The spatial resolution corresponds to 30 × 120 pc at the distance of M31. This is of the same order as the resolution at the distance of the center or our own galaxy given by a 25-m dish. Consequently the M31 survey is comparable to surveys of the Milky Way galaxy in wealth of detail as well as in amount of data (∼ 1 Gigabyte).


2020 ◽  
Vol 641 ◽  
pp. A96 ◽  
Author(s):  
A. Savino ◽  
A. Koch ◽  
Z. Prudil ◽  
A. Kunder ◽  
R. Smolec

The central kiloparsecs of the Milky Way are known to host an old, spheroidal stellar population, whose spatial and kinematical properties set it apart from the boxy-peanut structure that constitutes most of the central stellar mass. The nature of this spheroidal population, whether it is a small classical bulge, the innermost stellar halo, or a population of disk stars with large initial velocity dispersion, remains unclear. This structure is also a promising candidate to play host to some of the oldest stars in the Galaxy. Here we address the topic of the inner stellar spheroid age, using spectroscopic and photometric metallicities for a sample of 935 RR Lyrae stars that are constituents of this component. By means of stellar population synthesis, we derive an age-metallicity relation for RR Lyrae populations. We infer, for the RR Lyrae stars in the bulge spheroid, an extremely ancient age of 13.41 ± 0.54 Gyr and conclude they were among the first stars to form in what is now the Milky Way galaxy. Our age estimate for the central spheroid shows a remarkable agreement with the age profile that has been inferred for the Milky Way stellar halo, suggesting a connection between the two structures. However, we find mild evidence for a transition in the halo properties at rGC ∼ 5 kpc. We also investigate formation scenarios for metal-rich RR Lyrae stars, such as binarity and helium variations, and consider whether they can provide alternative explanations for the properties of our sample. We conclude that within our framework, the only viable alternative is to have younger, slightly helium-rich, RR Lyrae stars. This is a hypothesis that would open intriguing questions for the formation of the inner stellar spheroid.


2019 ◽  
Vol 487 (3) ◽  
pp. 4409-4423 ◽  
Author(s):  
Tyler Kelley ◽  
James S Bullock ◽  
Shea Garrison-Kimmel ◽  
Michael Boylan-Kolchin ◽  
Marcel S Pawlowski ◽  
...  

ABSTRACT We introduce an extension of the ELVIS project to account for the effects of the Milky Way galaxy on its subhalo population. Our simulation suite, Phat ELVIS, consists of 12 high-resolution cosmological dark matter-only (DMO) zoom simulations of Milky Way-size ΛCDM haloes [Mv = (0.7−2) × 1012 M⊙] along with 12 re-runs with embedded galaxy potentials grown to match the observed Milky Way disc and bulge today. The central galaxy potential destroys subhalos on orbits with small pericentres in every halo, regardless of the ratio of galaxy mass to halo mass. This has several important implications. (1) Most of the Disc runs have no subhaloes larger than Vmax = 4.5 km s−1 within 20 kpc and a significant lack of substructure going back ∼8 Gyr, suggesting that local stream-heating signals from dark substructure will be rare. (2) The pericentre distributions of Milky Way satellites derived from Gaia data are remarkably similar to the pericentre distributions of subhaloes in the Disc runs, while the DMO runs drastically overpredict galaxies with pericentres smaller than 20 kpc. (3) The enhanced destruction produces a tension opposite to that of the classic ‘missing satellites’ problem: in order to account for ultra-faint galaxies known within 30 kpc of the Galaxy, we must populate haloes with Vpeak ≃ 7 km s−1 (M ≃ 3 × 107 M⊙ at infall), well below the atomic cooling limit of $V_\mathrm{peak}\simeq 16 \,{\rm km} \, {\rm s}^{-1}$ (M ≃ 5 × 108M⊙ at infall). (4) If such tiny haloes do host ultra-faint dwarfs, this implies the existence of ∼1000 satellite galaxies within 300 kpc of the Milky Way.


Author(s):  
Karel Schrijver

How many planetary systems formed before our’s did, and how many will form after? How old is the average exoplanet in the Galaxy? When did the earliest planets start forming? How different are the ages of terrestrial and giant planets? And, ultimately, what will the fate be of our Solar System, of the Milky Way Galaxy, and of the Universe around us? We cannot know the fate of individual exoplanets with great certainty, but based on population statistics this chapter sketches the past, present, and future of exoworlds and of our Earth in general terms.


Galaxies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
Xiang Cai ◽  
Jonathan H. Jiang ◽  
Kristen A. Fahy ◽  
Yuk L. Yung

In the field of astrobiology, the precise location, prevalence, and age of potential extraterrestrial intelligence (ETI) have not been explicitly explored. Here, we address these inquiries using an empirical galactic simulation model to analyze the spatial–temporal variations and the prevalence of potential ETI within the Galaxy. This model estimates the occurrence of ETI, providing guidance on where to look for intelligent life in the Search for ETI (SETI) with a set of criteria, including well-established astrophysical properties of the Milky Way. Further, typically overlooked factors such as the process of abiogenesis, different evolutionary timescales, and potential self-annihilation are incorporated to explore the growth propensity of ETI. We examine three major parameters: (1) the likelihood rate of abiogenesis (λA); (2) evolutionary timescales (Tevo); and (3) probability of self-annihilation of complex life (Pann). We found Pann to be the most influential parameter determining the quantity and age of galactic intelligent life. Our model simulation also identified a peak location for ETI at an annular region approximately 4 kpc from the galactic center around 8 billion years (Gyrs), with complex life decreasing temporally and spatially from the peak point, asserting a high likelihood of intelligent life in the galactic inner disk. The simulated age distributions also suggest that most of the intelligent life in our galaxy are young, thus making observation or detection difficult.


2009 ◽  
Vol 5 (S265) ◽  
pp. 354-355
Author(s):  
Oscar Cavichia ◽  
Roberto D. D. Costa ◽  
Walter J. Maciel

AbstractNew abundances of planetary nebulae located towards the bulge of the Galaxy are derived based on observations made at LNA (Brazil). We present accurate abundances of the elements He, N, S, O, Ar, and Ne for 56 PNe located towards the galactic bulge. The data shows a good agreement with other results in the literature, in the sense that the distribution of the abundances is similar to those works. From the statistical analysis performed, we can suggest a bulge-disk interface at 2.2 kpc for the intermediate mass population, marking therefore the outer border of the bulge and inner border of the disk.


1993 ◽  
Vol 88 ◽  
pp. 81 ◽  
Author(s):  
C. E. Albert ◽  
J. C. Blades ◽  
D. C. Morton ◽  
Felix J. Lockman ◽  
M. Proulx ◽  
...  

1998 ◽  
Vol 184 ◽  
pp. 433-434
Author(s):  
A. M. Ghez ◽  
B. L. Klein ◽  
C. McCabe ◽  
M. Morris ◽  
E. E. Becklin

Although the notion that the Milky Way galaxy contains a supermassive central black hole has been around for more than two decades, it has been difficult to prove that one exists. The challenge is to assess the distribution of matter in the few central parsecs of the Galaxy. Assuming that gravity is the dominant force, the motion of the stars and gas in the vicinity of the putative black hole offers a robust method for accomplishing this task, by revealing the mass interior to the radius of the objects studied. Thus objects located closest to the Galactic Center provide the strongest constraints on the black hole hypothesis.


1990 ◽  
Vol 139 ◽  
pp. 205-206
Author(s):  
S. Kimeswenger ◽  
W. Schlosser ◽  
K. J. Seidensticker ◽  
B. Hoffmann ◽  
Th. Schmidt-Kaler

During the last two decades, many attempts were made to determine the global parameters of the Galaxy and to compare the Galaxy to other galaxies (Schmidt-Kaler and Schlosser 1973; de Vaucouleurs and Pence 1978; Gilmore 1984; van der Kruit 1986). While most of these investigations are based on star counts, a detailed overall study by surface photometry, because of the lack of homogeneous high-resolution data, is rare. The last attempt by van der Kruit (1986), based on Pioneer 10 data, suffered from low resolution. The great number of individual structures at low and even intermediate latitudes could not be recognized. Our work (B-band, Hoffmann et al. 1989, this volume; V-band, Schlosser, Schmidt-Kaler, and Schneider 1989; U-Band and R-band photometry, in preparation) provides this homogeneous high-resolution data.


2018 ◽  
Vol 14 (S344) ◽  
pp. 122-124
Author(s):  
J. V. Sales Silva ◽  
H. Perottoni ◽  
K. Cunha ◽  
H. J. Rocha-Pinto ◽  
D. Souto ◽  
...  

AbstractThe outer stellar halo is home to a number of substructures that are remnants of former interactions of the Galaxy with its dwarf satellites. Triangulum-Andromeda (TriAnd) is one of these halo substructures, found as a debris cloud by Rocha-Pinto et al., (2004) using 2MASS M giants. Would be these structures related to dwarf galaxies or to the galactic disk? To uncover the nature of these stars we performed a high-resolution spectroscopic study (R = 40,000) along with a kinematic analysis using Gaia data. We determined the atmospheric parameters and chemical abundances of Ca and Mg for the 13 TriAnd candidate stars along with their respective orbits. Our results indicate that the TriAnd stars analyzed have a galactic nature but that these stars are not from the local thin disk.


Sign in / Sign up

Export Citation Format

Share Document