scholarly journals Spatially resolved stellar populations with SAMI

2014 ◽  
Vol 10 (S309) ◽  
pp. 343-344
Author(s):  
Nicholas Scott ◽  

AbstractUsing data from the SAMI Galaxy Survey we measure azimuthally averaged stellar age and metallicity profiles for ∼ 500 galaxies, using both luminosity-weighted Lick indices and mass-weighted full spectral fitting. We find a weak trend for steeper (i.e. more negative) metallicity gradients in more massive galaxies, however, below stellar masses ∼ 1010.5 M⊙, the scatter in metallicity gradient increases dramatically.

2021 ◽  
Vol 503 (4) ◽  
pp. 5455-5472
Author(s):  
Anna Ferré-Mateu ◽  
Mark Durré ◽  
Duncan A Forbes ◽  
Aaron J Romanowsky ◽  
Adebusola Alabi ◽  
...  

ABSTRACT We present spatially resolved two-dimensional maps and radial trends of the stellar populations and kinematics for a sample of six compact elliptical galaxies (cE) using spectroscopy from the Keck Cosmic Web Imager (KCWI). We recover their star formation histories, finding that all except one of our cEs are old and metal rich, with both age and metallicity decreasing toward their outer radii. We also use the integrated values within one effective radius to study different scaling relations. Comparing our cEs with others from the literature and from simulations we reveal the formation channel that these galaxies might have followed. All our cEs are fast rotators, with relatively high rotation values given their low ellipticites. In general, the properties of our cEs are very similar to those seen in the cores of more massive galaxies, and in particular, to massive compact galaxies. Five out of our six cEs are the result of stripping a more massive (compact or extended) galaxy, and only one cE is compatible with having been formed intrinsically as the low-mass compact object that we see today. These results further confirm that cEs are a mixed-bag of galaxies that can be formed following different formation channels, reporting for the first time an evolutionary link within the realm of compact galaxies (at all stellar masses).


2019 ◽  
Vol 630 ◽  
pp. A145 ◽  
Author(s):  
R. Thomas ◽  
O. Le Fèvre ◽  
G. Zamorani ◽  
B. C. Lemaux ◽  
P. Hibon ◽  
...  

Aims. We seek is to identify old and massive galaxies at 0.5 < z < 2.1 on the basis of the magnesium index MgUV and then study their physical properties. Methods. We computed the MgUV index based on the best spectral fitting template of ∼3700 galaxies using data from the VLT VIMOS Deep Survey (VVDS) and VIMOS Ultra Deep Survey (VUDS) galaxy redshift surveys. Based on galaxies with the largest signal to noise and the best fit spectra we selected 103 objects with the highest spectral MgUV signature. We performed an independent fit of the photometric data of these galaxies and computed their stellar masses, star formation rates, extinction by dust and age, and we related these quantities to the MgUV index. Results. We find that the MgUV index is a suitable tracer of early-type galaxies at an advanced stage of evolution. Selecting galaxies with the highest MgUV index allows us to choose the most massive, passive, and oldest galaxies at any epoch. The formation epoch tf computed from the fitted age as a function of the total mass in stars supports the downsizing formation paradigm in which galaxies with the highest mass formed most of their stars at an earlier epoch.


2010 ◽  
Vol 6 (S277) ◽  
pp. 158-165
Author(s):  
Claudia Maraston

AbstractStellar populations carry information about the formation of galaxies and their evolution up to the present epoch. A wealth of observational data are available nowadays, which are analysed with stellar population models in order to obtain key properties such as ages, star formation histories, stellar masses. Differences in the models and/or in the assumptions regarding the star formation history affect the derived properties as much as differences in the data. I shall review the interpretation of high-redshift galaxy data from a model perspective. While data quality dominates galaxy analysis at the highest possible redshifts (z > 5), population modelling effects play the major part at lower redshifts. In particular, I discuss the cases of both star-forming galaxies at the peak of the cosmic star formation history as well as passive galaxies at redshift below 1 that are often used as cosmological probes. Remarks on the bridge between low and high-z massive galaxies conclude the contribution.


2019 ◽  
Vol 630 ◽  
pp. A71 ◽  
Author(s):  
Alessandro Sonnenfeld ◽  
Anton T. Jaelani ◽  
James Chan ◽  
Anupreeta More ◽  
Sherry H. Suyu ◽  
...  

Context. The determination of the stellar initial mass function (IMF) of massive galaxies is one of the open problems in cosmology. Strong gravitational lensing is one of the few methods that allow us to constrain the IMF outside of the Local Group. Aims. The goal of this study is to statistically constrain the distribution in the IMF mismatch parameter, defined as the ratio between the true stellar mass of a galaxy and that inferred assuming a reference IMF, of massive galaxies from the Baryon Oscillation Spectroscopic Survey (BOSS) constant mass (CMASS) sample. Methods. We took 23 strong lenses drawn from the CMASS sample, measured their Einstein radii and stellar masses using multi-band photometry from the Hyper Suprime-Cam survey, then fitted a model distribution for the IMF mismatch parameter and dark matter halo mass to the whole sample. We used a prior on halo mass from weak lensing measurements and accounted for strong lensing selection effects in our model. Results. Assuming a Navarro Frenk and White density profile for the dark matter distribution, we infer a value μIMF = −0.04 ± 0.11 for the average base-10 logarithm of the IMF mismatch parameter, defined with respect to a Chabrier IMF. A Salpeter IMF is in tension with our measurements. Conclusions. Our results are consistent with a scenario in which the region of massive galaxies where the IMF normalisation is significantly heavier than that of the Milky Way is much smaller than the scales 5 − 10 kpc probed by the Einstein radius of the lenses in our sample, as recent spatially-resolved studies of the IMF in massive galaxies suggest.


2016 ◽  
Vol 11 (S321) ◽  
pp. 273-273
Author(s):  
C. Catalán-Torrecilla ◽  
A. Gil de Paz ◽  
A. Castillo-Morales ◽  
J. Méndez-Abreu ◽  
S. Pascual ◽  
...  

AbstractExploring the spatial distribution of the star formation rate (SFR) in nearby galaxies is essential to understand their evolution through cosmic time. With this aim in mind, we use a representative sample that contains a variety of morphological types, the CALIFA Integral Field Spectroscopy (IFS) sample. Previous to this work, we have verified that our extinction-corrected Hα measurements successfully reproduce the values derived from other SFR tracers such as Hαobs + IR or UVobs + IR (Catalán-Torrecilla et al. 2015).Now, we go one step further applying 2-dimensional photometric decompositions (Méndez-Abreu et al. (2008), Méndez-Abreu et al. (2014)) over these datacubes. This method allows us to obtain the amount of SFR in the central part (bulge or nuclear source), the bar and the disk, separately. First, we determine the light coming from each component as the ratio between the luminosity in every component (bulge, bar or disk) and the total luminosity of the galaxy. Then, for each galaxy we multiply the IFS datacubes by these previous factors to recover the luminosity in each component. Finally, we derive the spectrum associated to each galaxy component integrating the spatial information in the weighted datacube using an elliptical aperture covering the whole galaxy.2D photometric decomposition applied over 3D datacubes will give us a more detailed understanding of the role that disks play in more massive galaxies. Knowing if the disks in more massive SF galaxies have on average a lower or higher level of star formation activity and how these results are affected by the presence of nuclear bars are still open questions that we can now solve. We describe the behavior of these components in the SFR vs. stellar mass diagram. In particular, we highlight the role of the disks and their contribution to both the integrated SFR for the whole galaxy and the SFR in the disk at different stellar masses in the SFR vs. stellar mass diagram together with their relative position to the star forming Main Sequence.


2012 ◽  
Vol 8 (S295) ◽  
pp. 290-299
Author(s):  
Richard M. McDermid

AbstractI present a brief review of the stellar population properties of massive galaxies, focusing on early-type galaxies in particular, with emphasis on recent results from the ATLAS3D Survey. I discuss the occurence of young stellar ages, cold gas, and ongoing star formation in early-type galaxies, the presence of which gives important clues to the evolutionary path of these galaxies. Consideration of empirical star formation histories gives a meaningful picture of galaxy stellar population properties, and allows accurate comparison of mass estimates from populations and dynamics. This has recently provided strong evidence of a non-universal IMF, as supported by other recent evidences. Spatially-resolved studies of stellar populations are also crucial to connect distinct components within galaxies to spatial structures seen in other wavelengths or parameters. Stellar populations in the faint outer envelopes of early-type galaxies are a formidable frontier for observers, but promise to put constraints on the ratio of accreted stellar mass versus that formed ‘in situ’ - a key feature of recent galaxy formation models. Galaxy environment appears to play a key role in controlling the stellar population properties of low mass galaxies. Simulations remind us, however, that current day galaxies are the product of a complex assembly and environment history, which gives rise to the trends we see. This has strong implications for our interpretation of environmental trends.


2020 ◽  
Vol 498 (4) ◽  
pp. 5009-5029
Author(s):  
Tara Fetherolf ◽  
Naveen A Reddy ◽  
Alice E Shapley ◽  
Mariska Kriek ◽  
Brian Siana ◽  
...  

ABSTRACT We use a sample of 350 star-forming galaxies at 1.25 &lt; z &lt; 2.66 from the Multi-Object Spectrograph For Infra-Red Exploration (MOSFIRE) Deep Evolution Field survey to demonstrate an improved Voronoi binning technique that we use to study the properties of resolved stellar populations in z ∼ 2 galaxies. Stellar population and dust maps are constructed from the high-resolution CANDELS/3D-HST multiband imaging. Rather than constructing the layout of resolved elements (i.e. Voronoi bins) from the signal-to-noise (S/N) distribution of the H160-band alone, we introduce a modified Voronoi binning method that additionally incorporates the S/N distribution of several resolved filters. The spectral energy distribution (SED)-derived resolved E(B − V)stars, stellar population ages, star-formation rates (SFRs), and stellar masses that are inferred from the Voronoi bins constructed from multiple filters are generally consistent with the properties inferred from the integrated photometry within the uncertainties, with the exception of the inferred E(B − V)stars from our z ∼ 1.5 sample due to their UV slopes being unconstrained by the resolved photometry. The results from our multifilter Voronoi binning technique are compared to those derived from a ‘traditional’ single-filter Voronoi binning approach. We find that single-filter binning produces inferred E(B − V)stars that are systematically redder by 0.02 mag, on average, but could differ by up to 0.20 mag and could be attributed to poorly constrained resolved photometry covering the UV slope. Overall, we advocate that our methodology produces more reliable SED-derived parameters due to the best-fitting resolved SEDs being better constrained at all resolved wavelengths – particularly those covering the UV slope.


2012 ◽  
Vol 10 (H16) ◽  
pp. 343-343 ◽  
Author(s):  
David Streich ◽  
Roelof S. de Jong ◽  

AbstractStellar populations are most useful for disentangling formation and evolution histories of galaxies. We present here results obtained using data from the GHOSTS survey ((Radburn-Smith et al., 2011) which uses HST photometry to resolve stellar populations in nearby massive disk galaxies. Using color magnitude diagrams we can distingiush stellar populations of different ages and analyse the spatial structure of each population seperately.We have examined the vertical disk structure in six edge-on galaxies. We find a general heating of disk, i.e. larger scaleheights for older populations. The scaleheight of each population is constant over most of radial extent of each galaxy.In massive galaxies (Vrot > 150 km/s) we clearly see a thick component (i.e. there are more stars at large distances from the plane than expected from a single disk model). These thick components consist of intermediate-aged and old stars (>1 Gyr), and the (thick) scaleheight of the old population (>4 Gyr) is significantly larger than the (thick) scaleheight of the intermediate aged (1-2 Gyr) population.This finding argues against a rapid formation of the thick components and favors a more secular formation of these components.


2020 ◽  
Vol 15 (S359) ◽  
pp. 136-140
Author(s):  
Minju M. Lee ◽  
Ichi Tanaka ◽  
Rohei Kawabe

AbstractWe present studies of a protocluster at z =2.5, an overdense region found close to a radio galaxy, 4C 23.56, using ALMA. We observed 1.1 mm continuum, two CO lines (CO (4–3) and CO (3–2)) and the lower atomic carbon line transition ([CI](3P1-3P0)) at a few kpc (0″.3-0″.9) resolution. The primary targets are 25 star-forming galaxies selected as Hα emitters (HAEs) that are identified with a narrow band filter. These are massive galaxies with stellar masses of > 1010Mʘ that are mostly on the galaxy main sequence at z =2.5. We measure the molecular gas mass from the independent gas tracers of 1.1 mm, CO (3–2) and [CI], and investigate the gas kinematics of galaxies from CO (4–3). Molecular gas masses from the different measurements are consistent with each other for detection, with a gas fraction (fgas = Mgas/(Mgas+ Mstar)) of ≃ 0.5 on average but with a caveat. On the other hand, the CO line widths of the protocluster galaxies are typically broader by ˜50% compared to field galaxies, which can be attributed to more frequent, unresolved gas-rich mergers and/or smaller sizes than field galaxies, supported by our high-resolution images and a kinematic model fit of one of the galaxies. We discuss the expected scenario of galaxy evolution in protoclusters at high redshift but future large surveys are needed to get a more general view.


Author(s):  
I. Ferreras ◽  
C. Weidner ◽  
A. Vazdekis ◽  
F. La Barbera

The stellar initial mass function (IMF) is one of the fundamental pillars in studies of stellar populations. It is the mass distribution of stars at birth, and it is traditionally assumed to be universal, adopting generic functions constrained by resolved (i.e. nearby) stellar populations (e.g., Salpeter 1955; Kroupa 2001; Chabrier 2003). However, for the vast majority of cases, stars are not resolved in galaxies. Therefore, the interpretation of the photo-spectroscopic observables is complicated by the many degeneracies present between the properties of the unresolved stellar populations, including IMF, age distribution, and chemical composition. The overall good match of the photometric and spectroscopic observations of galaxies with population synthesis models, adopting standard IMF choices, made this issue a relatively unimportant one for a number of years. However, improved models and observations have opened the door to constraints on the IMF in unresolved stellar populations via gravity-sensitive spectral features. At present, there is significant evidence of a non-universal IMF in early-type galaxies (ETGs), with a trend towards a dwarf-enriched distribution in the most massive systems (see, e.g., van Dokkum & Conroy 2010; Ferreras et al. 2013; La Barbera et al. 2013). Dynamical and strong-lensing constraints of the stellar M/L in similar systems give similar results, with heavier M/L in the most massive ETGs (see, e.g., Cappellari et al. 2012; Posacki et al. 2015). Although the interpretation of the results is still open to discussion (e.g., Smith 2014; La Barbera 2015), one should consider the consequences of such a bottom-heavy IMF in massive galaxies.


Sign in / Sign up

Export Citation Format

Share Document